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Abstract

This paper presents the problem of the management of
the deployment and of the maintenance of a constel-
lation of satellites, as it has been set by the French
space agency (CNES). After an informal presentation, a
more formal description, based on the Markov Decision
Process (MDP) framework, is provided. Several ap-
proaches for dealing with such a problem are then em-
phasized. We think that such a real life problem might
make up a challenging benchmark for any approach in
the domain of automatic decision and planning under
uncertainty.

Introduction
In this paper, we want to present as precisely as possible the
problem of the management of the deployment and of the
maintenance of a constellation of satellites, independently
of the type of satellite and of the type of mission (telecom-
munication, navigation, or observation), as it has been set by
the French space agency (CNES).

We do that because we think that such a real life problem
might make up a challenging benchmark for any approach
in the domain of automatic decision and planning under un-
certainty.

In the next section, we provide the reader with a global
informal view of the problem. In the following section, we
provide her/him with a more formal description. Any for-
mal description requires a framework. In that case, we use
as a basis the Markov Decision Process (MDP) framework
(Puterman 1994). Decision instants and temporal horizon,
states, constraints on states, initial and goal states, decisions,
constraints on decisions, effects of actions, probabilities of
transitions, local and global costs are successively defined.
In the last section, several approaches are evoked without
any claim to be exhaustive.

Global view of the problem
Whatever its mission is (telecommunication, navigation, or
observation), a constellation of satellites is made up of a
specified number of spatially distributed spacecraft, which
together allow the mission to be filled. All the satellites or
at least a subset of them must be operational to satisfy the
mission objectives. If too few satellites are operational, the

mission objectives will be only partially met, and eventually
not at all.

But, in general, all the satellites cannot be launched at the
same time by the same launcher. Several launches, using
eventually various launcher types and various launch sites,
are necessary. These launches must be organized over time.

Moreover, failures may occur at any stage of the deploy-
ment, of the maintenance, and of the operational life of the
constellation. So, the management of its deployment and
of its maintenance must be able to anticipate these possible
failures, as well as to react to them when they occur.

Globally speaking, managing the deployment and the
maintenance of a constellation consists in organizing the
launches and the orbital transfers in order to deploy it as
soon as possible and to maintain it as best as possible in its
operational state.

More precisely, the constellations we consider are orga-
nized along several orbital planes (see Figure 1). A spec-
ified number of operational satellites is necessary on each
orbital plane. On each orbital plane, satellites may be either
on an operational orbit, or on a spare orbit. Satellites that
are on a spare orbit are drifting in a month from an orbital
plane to the following one. Launchers are able to put a spec-
ified number of satellites on one of the orbital planes: all the
launched satellites on the same orbital plane. These satel-
lites can be either immediately transferred from the spare
orbit to the operational one on this orbital plane, or left on
the spare orbit to drift from orbital plane to orbital plane.
In the later case, when their orbital plane coincides with an
operational orbital plane, that is once per month, they may
be transferred from the spare orbit to the operational one on
this orbital plane (see Figure 2).

Launches are not possible at any time. We consider that
no more than one launch is possible each month and that
a minimum time must pass between two launches of the
same type. This minimum time increases in case of fail-
ure of the first launch, in order to let enough time for in-
quiry. Moreover, management of the launch sites imposes
that launches can be neither decided nor cancelled at the last
minute: a launch must be either decided or cancelled a spec-
ified time in advance, except in case of failure of a launch,
which may impose to postpone launches of the same type, in
order to meet the minimum time between launches after fail-
ure. Constraints on the production of launchers and satellites
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Figure 1: View of the goal constellation.

launching
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Figure 2: On an orbital plane, launch of a satellite and trans-
fer of a spare satellite from the spare orbit to the operational
one.

are not considered here.
Two types of cost must be considered: firstly, the cost

of the production of launchers and satellites and of the
launches; secondly the cost which may result from a partial
or complete unavailability of the constellation.

Failures may occur at any stage and at any time: launcher
failure, spare satellite running failure, spare satellite orbital
transfer failure, operational satellite running failure, failure
of either a spare or an operational satellite.

The global objective of the management is finally to min-
imize over a given temporal horizon (either finite or infinite)
the sum of the production and of the unavailability costs.

An MDP formulation
In this section, we want to provide the reader with a math-
ematically well-founded definition of the problem. Because
the problem to solve is clearly what is referred to as a
sequential decision problem under uncertainty, we use to
model it the MDP framework (Puterman 1994), which is
very convenient for modelling such problems.

Note immediately that we do not need the extension of
the MDP framework to partial observability, referred to as
Partially Observable MDP (POMDP) (Kaelbling, Littman,
& Cassandra 1998), because we assume that the real state of
the constellation is completely and precisely known at each
decision time.

What we precisely use is a structured variant of the MDP
framework, which is inspired but different from the Fac-
tored MDP framework (Boutilier, Dean, & Hanks 1999;
Boutilier, Dearden, & Goldszmidt 2000): we use state, deci-
sion, and random variables for describing states, decisions
and state transitions and we use constraints (disjunctions of
equations, inequations, and disequations) for defining rela-
tions between these variables.

Note that this modelling choice does not prejudge the
use of a specific solving approach. The best solving
approach remains to be chosen among many candidates:
Artificial Intelligence (AI) planning algorithms (Fikes &
Nilsson 1971; Blum & Furst 1997); probabilistic plan-
ning (Kushmerick, Hanks, & Weld 1995); MDP algorithms
like dynamic programming, value iteration, policy iteration
(Puterman 1994); reinforcement learning (Sutton & Barto
1998); neuro-dynamic programming (Bertsekas & Tsitsiklis
1996); stochastic optimization (Fu 2001); case-based rea-
soning (Jona & Kolodner 1992); expert systems (Hayes-
Roth 1992) . . . See the last section for a short discussion
about these various alternatives.

An MDP is usually defined by a quintuple 〈I, S,A, T,R〉,
where I is a finite or infinite set of instants at which de-
cisions must be made, S is a finite set of possible states of
the system, A is a finite set of possible decisions of action on
this system, T is a state transition function which associates,
with any pair of states s, s′ ∈ S and each action a ∈ A, the
probability to be in state s′ after being in state s and apply-
ing action a, and R is a transition reward function which
associates, with any pair of states s, s′ ∈ S and each action
a ∈ A, the immediate gain or cost for being in state s′ after
being in state s and applying action a.
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We describe these elements in the five sections that imme-
diately follow the next one, which is dedicated to problem
data.

Problem data
We introduce the following notations for the problem data
about goal constellation, launching capacities, delays be-
tween launches, decision horizon, failure probabilities, and
costs.

Goal constellation

• NOP is the number of orbital planes in the constellation;

• NOS is the number of operational satellites per orbital
plane in the goal constellation.

Launching capacities

• NTL is the number of available types of launcher;

• for each type of launcher tl, 0 ≤ tl ≤ NTL, NLS[tl] is
the number of satellites that can be launched by a launcher
of type tl; tl = 0 means no launcher; NLS[0] = 0.

Delays between launches

• for each type of launcher tl, 0 ≤ tl ≤ NTL, MTL[tl]
is the minimum time, in months, between two successive
launches of type tl; MTL[0] = 1;

• for each type of launcher tl, 0 ≤ tl ≤ NTL, MTLF [tl]
is the minimum time, in months, between two succes-
sive launches of type tl in case of failure of the first
one; MTLF [0] = 1; moreover, ∀tl, 0 ≤ tl ≤ NTL,
MTL[tl] ≤ MTLF [tl].

Decision horizon

• DH is the minimum time, in months, a launch may be de-
cided or cancelled in advance, that is the time the launch-
ing plan is fixed, except in case of failure of a launch,
which may impose to postpone planned launches of the
same type.

Failure probabilities

• for each type of launcher tl, 0 ≤ tl ≤ NTL, PFL[tl]
is the probability of failure of a launcher of type tl;
PFL[0] = 1;

• PFRSS is the probability of failure when running a
satellite on a spare orbit;

• PFROS is the probability of failure when transferring a
satellite from a spare orbit to an operational one and then
running it on this operational orbit;

• for each satellite age a, a ≥ 0, expressed in months,
PFSS[a] is the probability of failure over a month of a
satellite of age a on an spare orbit;

• for each satellite age a, a ≥ 0, expressed in months,
PFOS[a] is the probability of failure over a month of
a satellite of age a on an operational orbit.

Costs

• for each type of launcher tl, 0 ≤ tl ≤ NTL, CL[tl] is the
cost of a launcher of type tl; CL[0] = 0;

• CS is the cost of a satellite;

• CU [] is the function that returns the cost per month of the
complete or partial unavailability of the constellation, that
is of the number of missing operational satellites on each
orbital plane;

• γ is the discounting multiplicative factor to apply each
month to future costs with regard to current ones.

Decision instants and temporal horizon
Because the drift of a spare satellite from an orbital plane to
the following one takes one month and because one launch
(and no more than one) is possible each month, we asso-
ciate a decision instant with each month and assume that
executing this decision and observing its actual effect on the
constellation state take no more than one month.

The length of the temporal horizon to consider is either
finite (limited to a specified time EH , in months), or infinite.

States, constraints on states
For each instant (each month of the temporal horizon), the
state of the constellation obviously involves the number of
satellites on each orbital plane, on the spare and on the op-
erational orbit.

A first difficulty occurs with the age of the satellites. In-
troducing them to the state increases dramatically the dimen-
sion of the state space, but may be necessary for some more
precise reasonings, especially in the maintenance phase,
when satellite ages and then failure probabilities may be
very different from each other.

A second difficulty occurs, due to the fact that a minimum
time must pass between two launches of the same type and
that a launch must be either decided or cancelled at least
DH months in advance. The easiest way of taking these
requirements into account in an MDP formulation, that is
of maintaining the markovian nature of the process, is to
introduce the current launching plan over DH months, as
well as the current constraints on its possible extensions, to
the state.

Finally, for each instant i, the state we consider involves
six types of variable:

• for each orbital plane op, 1 ≤ op ≤ NOP , the number
nss[i, op], nss[i, op] ≥ 0, of spare satellites on this orbital
plane;

• for each orbital plane op, 1 ≤ op ≤ NOP , the number
nos[i, op], nos[i, op] ≥ 0, of operational satellites on this
orbital plane;

• for each orbital plane op, 1 ≤ op ≤ NOP , the sequence
ass[i, op], ordered according to a decreasing order, of the
ages of the spare satellites on this orbital plane;

• for each orbital plane op, 1 ≤ op ≤ NOP , the sequence
aos[i, op], ordered according to a decreasing order, of the
ages of the operational satellites on this orbital plane;
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• for each instant i′, 0 ≤ i′ ≤ DH , of the current de-
cision horizon, expressed in months in relation to i (i′

points out the instant i + i′), the type of launch ptl[i, i′],
0 ≤ ptl[i, i′] ≤ NTL, that is planned at this instant;
ptl[i, i′] = 0 means that no launch is planned at this in-
stant;

• for each type of launcher tl, 0 ≤ tl ≤ NTL, the min-
imum time mtl[i, tl], DH + 1 ≤ mtl[i, tl] ≤ DH +
MTL[tl], in months, before a launch of this type can be
planned, taking into account previous and future launches.

Note that constraints link the last two types of variable:

∀i′, i′′, 0 ≤ i′, i′′ ≤ DH, i′ < i′′, (1)

(ptl[i, i′] = ptl[i, i′′]) ⇒ (MTL[ptl[i, i′]] ≤ i′′ − i′)

∀i′, 0 ≤ i′ ≤ DH, (2)

MTL[ptl[i, i′]] ≤ mtl[i, ptl[i, i′]] − i′

They express that the minimum time between launches of
the same type must be met between every pair of planned
launches of the same type, and between every planned
launch and every launch of the same type that might be
planned in the future. Other constraints should express that
the cardinality of ass[i, op] and aos[i, op] are respectively
equal to nss[i, op] and nos[i, op].

Decisions and constraints on decisions
Three types of decision must be made at each instant:

• the first one is related to the target orbital plane for the cur-
rent launch, at instant i, if such a launch has been planned;

• the second one is related to the current orbital transfer,
at instant i, of spare satellites from spare orbits to opera-
tional ones;

• the third one is related to the extension of the cur-
rent launching plan: what type of launch, eventually no
launch, to plan for instant i + DH + 1, which comes just
after the last instant i+DH of the current launching plan?
(see Figure 3)

i i+1 i+DH+1i+DH

current
decision horizon decision horizon

extension of the current

time

Figure 3: Decision horizon and its extension.

We assume that, at each instant i, these three types of de-
cision are made in sequence in this order and that the effects
of a decision can be observed before making the following
one. This justifies that three states be associated with each
instant. We note 〈i, d〉, d ∈ {1, 2, 3} the state of the constel-
lation at instant i just before making the decisions of type d
(see Figure 4).

For each instant i and each type of decision d, the decision
we consider involves the following types of variable:

s

a

r

s s s s

a a a a

r r r r

<i−1,3> <i,1> <i,2> <i,3> <i+1,1>

variables
decision
variables

state

variables
random

transitions

month i

Figure 4: Each month, a three-step decision.

• for the first decision type, the orbital plane lop[i], 0 ≤
lop[i] ≤ NOP , to choose for the current launch, at instant
i, if such a launch has been planned; lop[i] = 0 applies
when no launch has been planned;

• for the second decision type, for each orbital plane op,
1 ≤ op ≤ NOP , the number nts[i, op], nts[i, op] ≥ 0,
of spare satellites to transfer, at instant i, from the spare
orbit to the operational one, on this orbital plane, and,
more precisely, the sequence ats[i, op], ordered according
to a decreasing order, of the ages of the spare satellites to
transfer;

• for the third decision type, the type of launcher etl[i],
0 ≤ etl[i] ≤ NTL, to choose for extending the current
launching plan to instant i + DH + 1.

Note that, whereas the effects of the first two types of de-
cision are immediate, the effect of the last one is delayed.

Various constraints link state and decision variables and
express that, for each type of decision, not all the decisions
are possible in a given state:

(ptl[〈i, 1〉, 0] = 0) ⇔ (lop[i] = 0) (3)

∀op, 1 ≤ op ≤ NOP, (4)

nts[i, op] ≤ nss[〈i, 2〉, op]

mtl[〈i, 3〉, etl[i]] = DH + 1 (5)

The first one (equation 3) associates a null orbital plane
with a null type of launcher (no launch). The second one
(equation 4) expresses that, on each orbital plane, it is not
possible to transfer more satellites than the number of satel-
lites that are available at this time on the spare orbit. The
third one (equation 5) expresses that the minimum time be-
tween launches of the same type must be met between the
launch that is chosen for extending the current launching
plan and the previous launch of the same type. Other con-
straints should express that ats[i, op] is a subsequence of
ass[〈i, 2〉, op] and that its cardinality is equal to nts[i, op].

Effects of actions and probabilities of transitions
To describe the non deterministic transitions that result from
a decision of action, we use random variables. Actual val-
ues of these variables, together with the values of the state
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and decision variables at instant i, completely determine the
values of the state variables at the next instant i + 1. But,
whereas values of the decision variables are under the con-
trol of the management system, actual values of the random
variables are out of its control. The only knowledge about
their possible values is a probability distribution which is
assumed to exist for each of them.

The random variables we use are:
• for the first transition type after the first decision step:

– the failure fl[i], fl[i] ∈ {0, 1}, of the current launch,
at instant i, if such a launch has been planned, with
fl[i] = 1 in case of failure;

– the number nfrss[i], 0 ≤ nfrss[i] ≤ NLS[tl[i, 0]],
of satellites that are launched at instant i and fail when
running on the spare orbit; nfrss[i] = NLS[tl[i, 0]]
when fl[i] = 1;

• for the second transition type after the second decision
step:

– for each orbital plane op, 1 ≤ op ≤ NOP , the number
nfros[i, op], 0 ≤ nfros[i, op] ≤ nts[i, op], of spare
satellites that are transferred from the spare orbit to the
operational one at instant i and for which either transfer
or running on the operational orbit fails; more precisely,
for each element of index k, 1 ≤ k ≤ nts[i, op], in the
sequence ats[i, op] of the ages of the transferred spare
satellites, the failure ft[i, op, k], ft[i, op, k] ∈ {0, 1},
either of the transfer, or of the operational running of
the associated satellite;

• for the third transition type after the third decision step:

– for each orbital plane op, 1 ≤ op ≤ NOP , the number
nfss[i, op], 0 ≤ nfss[i, op] ≤ nss[〈i, 3〉, op], of spare
satellites that are present on this orbital plane and fail
at instant i (during month i); more precisely, for each
element of index k, 1 ≤ k ≤ nss[〈i, 3〉, op], in the
sequence ass[〈i, 3〉, op] of the ages of the present spare
satellites, the failure fs[i, op, k], fs[i, op, k] ∈ {0, 1},
of the associated satellite;

– for each orbital plane op, 1 ≤ op ≤ NOP , the number
nfos[i, op], 0 ≤ nfss[i, op] ≤ nos[〈i, 3〉, op], of op-
erational satellites that are present on this orbital plane
and fail at instant i (during month i); more precisely, for
each element of index k, 1 ≤ k ≤ nos[〈i, 3〉, op], in the
sequence aos[〈i, 3〉, op] of the ages of the present oper-
ational satellites, the failure fo[i, op, k], fo[i, op, k] ∈
{0, 1}, of the associated satellite.

The probability distributions that are associated with these
random variables are the following:
• for the first transition type:

– for the variable fl:
P (fl[i] = 1) = PFL[ptl[〈i, 1〉, 0]] (6)

– for the variable nfrss, if Cn
m is the number of combi-

nations of n elements among m:
∀n, 0 ≤ n ≤ NLS[ptl[〈i, 1〉, 0]], (7)

P (nfrss[i] = n) = Cn
NLS[ptl[〈i,1〉,0]] ·

PFRSSn · (1 − PFRSS)NLS[ptl[〈i,1〉,0]]−n

• for the second transition type:

– for the variables nfros:

∀op, 1 ≤ op ≤ NOP, (8)

∀n, 0 ≤ n ≤ nts[i, op],

P (nfros[i, op] = n) = Cn
nts[i,op] ·

PFROSn · (1 − PFROS)nts[i,op]−n

• for the third transition type:

– for the variables nfss:

∀op, 1 ≤ op ≤ NOP, (9)

∀n, 0 ≤ n ≤ nss[〈i, 2〉, op],

P (nfss[i, op] = n) =
∑

as⊆ass[〈i,2〉,op],|as|=n

((
∏

a∈as PFSS[a]) ·

(
∏

a∈(ass[〈i,2〉,op]−as) (1 − PFSS[a])))

– for the variables nfos:

∀op, 1 ≤ op ≤ NOP, (10)

∀n, 0 ≤ n ≤ nos[〈i, 2〉, op],

P (nfos[i, op] = n) =
∑

as⊆aos[〈i,2〉,op],|as|=n

((
∏

a∈as PFOS[a]) ·

(
∏

a∈(aos[〈i,2〉,op]−as) (1 − PFOS[a])))

– for the variables fs, if a[k] is the age of the element of
index k in the sequence ass[〈i, 2〉, op]:

∀op, 1 ≤ op ≤ NOP, (11)

∀k, 0 ≤ k ≤ nss[〈i, 2〉, op],

P (fs[i, op, k] = PFSS[a[k]])

– for the variables fo, if a[k] is the age of the element of
index k in the sequence aos[〈i, 2〉, op]:

∀op, 1 ≤ op ≤ NOP, (12)

∀k, 0 ≤ k ≤ nos[〈i, 2〉, op],

P (fo[i, op, k] = PFOS[a[k]])

These random variables allow us to write state transition
equations:

• for the first transition type, changes affect, on the one
hand, the number nss of spare satellites (and the asso-
ciated sequence ass of ages) on the chosen launch orbital
plane, on the other hand, the current launching plan and
the constraints on its possible extensions (ptl and mtl) in
case of launcher failure (increase in the minimum time
before a launch of the same type); because they are ob-
vious, but may be very cumbersome to write and to read,
we do not provide the reader with the exact definition of
the changes in ass, ptl, and mtl;

∀op, 1 ≤ op ≤ NOP, op 6= lop[i], (13)

nss[〈i, 2〉, op] = nss[〈i, 1〉, op]
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(lop[i] > 0) ⇒ (14)

(nss[〈i, 2〉, lop[i]] = nss[〈i, 1〉, lop[i]] +

(1 − fl[i]) · (NLS[tl[i, 0]] − nfrss[i]))

both equations (equations 13 and 14) express that the
number of spare satellites does not change, except on the
possible launch orbital plane, where it is increased by
the number of satellites whose launch and running on the
spare orbit succeed;

• for the second transition type, changes affect the number
of spare and operational satellites (and the associated se-
quences ass and aos of ages) on all the orbital planes (due
to transfers of spare satellites from the spare orbit to the
operational one) ; we do not provide the reader with the
exact definition of the changes in ass and aos;

∀op, 1 ≤ op ≤ NOP, (15)

nss[〈i, 3〉, op] = nss[〈i, 2〉, op] − nts[i, op]

∀op, 1 ≤ op ≤ NOP, (16)

nos[〈i, 3〉, op] = nos[〈i, 2〉, op] +

nts[i, op] − nfros[i, op]

both equations (equations 15 and 16) express that, on each
orbital plane, the number of spare satellites is decreased
by the number of transferred satellites and that the num-
ber of operational satellites is increased by the number
of transferred satellites whose running on the operational
orbit succeeds;

• for the third transition type, changes affect, on the one
hand, the number of spare and operational satellites (and
the associated sequences of ages) on all the orbital planes
(due to possible failures during month i and to the drifting
of the spare satellites on their spare orbits), on the other
hand, the launching plan and the constraints on its possi-
ble extensions (due to its one step extension); we do not
provide the reader with the exact definition of the changes
in ass and aos;

∀op, 2 ≤ op ≤ NOP, (17)

nss[〈i + 1, 1〉, op] = nss[〈i, 3〉, op − 1] −

nfss[i, op − 1]

nss[〈i + 1, 1〉, 1] = nss[〈i, 3〉, NOP ] − (18)

nfss[i,NOP ]

∀op, 1 ≤ op ≤ NOP, (19)

nos[〈i + 1, 1〉, op] = nos[〈i, 3〉, op] −

nfos[i, op]

∀i′, 0 ≤ i′ ≤ DH − 1, (20)

ptl[〈i + 1, 1〉, i′] = ptl[〈i, 3〉, i′ + 1]

ptl[〈i + 1, 1〉, DH] = etl[i] (21)

∀tl, 0 ≤ tl ≤ NTL, tl 6= etl[i], (22)

mtl[〈i + 1, 1〉, tl] =

max(DH + 1,mtl[〈i, 3〉, tl] − 1)

mtl[〈i + 1, 1〉, etl[i]] = DH + MTL[etl[i]] (23)

the first two equations (equations 17 and 18) express that,
on each orbital plane, the number of spare satellites is
equal to the number of spare satellites that were present
on the previous orbital plane the previous month and did
not fail during this month; the third one (equation 19) ex-
presses that, on each orbital plane, the number of opera-
tional satellites is equal to the number of operational satel-
lites that were present the previous month and did not fail
during this month; the fourth one (equation 20) results
from the shift of the launching plan, month after month;
the fifth one (equation 21) results from the adding of the
current decision at the end of the current launching plan;
the last two ones (equations 22 and 23) result from the de-
creasing, month after month, for each type of launcher, of
the minimum time before a launch of this type, except for
the type that is associated with the current decision.

Combining these equations with the probability distribu-
tions that are associated with these random variables allow
us to get straightforwardly conditional probability distribu-
tions on the state variables at the following step. For exam-
ple, for the first transition type:

∀op, 1 ≤ op ≤ NOP, (24)

∀n, n′ ≥ 0, n 6= n′,

P (nss[〈i, 2〉, op] = n′ |nss[〈i, 1〉, op] = n, lop[i] 6= op)

= 0

∀op, 1 ≤ op ≤ NOP, (25)

∀n ≥ 0,

P (nss[〈i, 2〉, op] = n |nss[〈i, 1〉, op] = n, lop[i] 6= op)

= 1

∀op, 1 ≤ op ≤ NOP, (26)

∀n, n′ ≥ 0, n′ < n,

P (nss[〈i, 2〉, op] = n′ |nss[〈i, 1〉, op] = n, lop[i] = op)

= 0
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∀op, 1 ≤ op ≤ NOP, (27)

∀n, n′ ≥ 0, n + NLS[tl[i, 0]] < n′,

P (nss[〈i, 2〉, op] = n′ |nss[〈i, 1〉, op] = n, lop[i] = op)

= 0

∀op, 1 ≤ op ≤ NOP, (28)

∀n, n′ ≥ 0, n ≤ n′ ≤ n + NLS[tl[i, 0]],

P (nss[〈i, 2〉, op] = n′ |nss[〈i, 1〉, op] = n, lop[i] = op)

= P (fl[i] = 0) ·

P (nfrss[i] = n − n′ + NLS[tl[i, 0]])

∀op, 1 ≤ op ≤ NOP, (29)

∀n, 1 ≤ n ≤ NOP,

P (nss[〈i, 2〉, op] = n |nss[〈i, 1〉, op] = n, lop[i] = op)

= P (fl[i] = 1) +

P (fl[i] = 0) · P (nfrss[i] = NLS[tl[i, 0]])

The first two equations (equations 24 and 25) express that
the number of spare satellites does not change on any orbital
plane that is different from the chosen launch orbital plane.
The other four (equations 26, 27, 28, and 29) are related
to the chosen orbital plane: the first of them (equation 26)
expresses that the number of spare satellites cannot decrease
on this orbital plane; the second one (equation 27) expresses
that it cannot increase of more than the number of launched
satellites; the third one (equation 28) expresses that it can
increase strictly only if the launch succeeds; the fourth one
(equation 29) expresses that it can remain the same, either if
the launch fails, or if running the launched satellites fails for
all of them.

Local and global costs
We consider that the cost of a transition of the two first types
is null, but that the cost of a transition of the third type is the
sum of two elements:

• the cost of the launch that has been planned, which is it-
self the sum of the cost of the launcher and of the launched
satellites; note that means that the launcher and the satel-
lites must be paid as soon as they are planned;

• the cost of the complete or partial unavailability of the
constellation during month i.

This cost is thus given by the formula:

CL[etl[i]] + NLS[etl[i]] · CS + (30)

CU [{nos[〈i + 1, 1〉, op] | 1 ≤ op ≤ NOP}]

As always with costs, the global cost is the sum of the
local costs. In case of an infinite temporal horizon, the dis-
counting factor γ is applied each month.

Deployment, maintenance, and renewal problems
It may be profitable to distinguish three different planning
problems, each of them using the same basic model:

• the deployment problem, where the initial state (i = 0) is
made up of neither spare nor operational satellite and of
an empty launching plan (the variables nss, nos, tl are
all equal to 0, the variables ass and aos to empty, and the
variables mtl to DH+1) and where the goal state is made
up of NOS satellites on each orbital plane (the variables
nos are all equal to NOS); in this problem, the temporal
horizon is finite, but not bounded (we do not know exactly
when the constellation will be fully deployed); the ages
of the satellites are not very different; thus, it may be not
necessary to take them into account in the state of the con-
stellation; moreover, one can assume that each month be-
fore the full deployment of the constellation costs a given
amount of money;

• the maintenance problem, where the objective is to main-
tain as best as possible the goal state of the previous prob-
lem, over a finite or infinite horizon; in this problem, the
ages of the satellites may be very different from each
other; thus, it may be necessary to take them into account
in the state of the constellation; moreover, one can assume
that each month of partial unavailability costs an amount
of money that is a function to be precisely defined of the
number of missing operational satellites on each orbital
plane;

• the renewal problem, which can be seen as a variant of
the previous problem, with this special feature that most
of the satellites arrive nearly at the same time at the end
of their operational life.

Numerical values
Here is a set of typical values for this problem:

• number of orbital planes:
NOP = 8;

• number of operational satellites per orbital plane:
NOS = 4;

• number of available types of launcher:
NTL = 2;

• number of satellites that can be launched by a launcher:
NLS[1, 2] = [4, 2];

• minimum time between two launches of the same type (in
months):
MTL[1, 2] = [4, 2];

• minimum time between two launches of the same type in
case of failure of the first one (in months):
MTLF [1, 2] = [8, 4];

• decision horizon (length of the current launching plan, in
months):
DH = 6;

• probability of failure of a launch:
PFL[1, 2] = [0.1, 0.05];
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• probability of failure when running a satellite on a spare
orbit:
PFRSS = 0.1;

• probability of failure when transferring a satellite from a
spare orbit to an operational one and running it on the
operational orbit:
PFROS = 0.05;

• probability of failure on a spare orbit in a month:
∀a, a < 72, PFSS[a] = 0.01
PFSS[72] = 1
(probability independent of the age until 6 years; end of
life at 6 years);

• probability of failure on a operational orbit in a month:
∀a, a < 72, PFOS[a] = 0.02
PFOS[72] = 1
(the same thing as with the probability of failure on a
spare orbit);

• cost of a launch:
CL[1, 2] = [0.5, 0.3];

• cost of a satellite:
CS = 0.1;

• cost of any partial unavailability of the constellation (a
complete availability is assumed to be required at any mo-
ment):
CU = 1;

• cost discounting factor:
γ = 0.99.

These values give us an idea of the dimension of the state
and action spaces. If we assume that there are at most NOS
satellites on the spare and on the operational orbits on each
orbital plane, if we do not take into account the ages of
the satellites that dramatically increase the dimension of the
state space, but if we do not take into account various con-
straints and symmetries that can reduce the dimension of the
state and action spaces:

• the dimension SD of the state space is equal to:

(NOS + 1)2·NOP · (NTL + 1)DH+1 ·

NTL∏

tl=0

MTL[tl]

• the dimension AD of the action space is equal to:

(NOP + 1) · (NOS + 1)NOP · (NTL + 1)

With the numerical values, we gave as an example, we
obtain the following values:

• SD = 516 · 37 · 4 · 2 ' 2.67 · 1015;

• AD = 9 · 58 · 3 ' 1.05 · 107;

Whereas the number of decisions to consider in each state
seems to be reasonable, the number of states to consider is
huge and becomes astronomical if we want to introduce the
age of each satellite.

Possible approaches
As we already said, this modelling does not prejudge the
use of any specific solving approach. Among the numerous
possible approaches, one can roughly distinguish between
knowledge-based, model-based, and simulation-based ap-
proaches:

• knowledge-based approaches assume the existence of an
expert knowledge about what is the best thing to do in any
possible state of the system; in expert systems (Hayes-
Roth 1992), this knowledge is organized into decision
rules; in case-based reasoning systems (Jona & Kolodner
1992), it is organized into cases; we can however observe
that constellations of satellites are new systems and that
nobody has a great experience about their deployment and
maintenance; in such a context, these approaches do not
seem to be the most appropriate;

• model-based approaches assume the existence of a model
of the system and of its dynamics, as the one we described
in the previous section (model of the own dynamics of
the system and of its dynamics in response to possible
actions); among these approaches, one can further distin-
guish between planning approaches and sequential deci-
sion making approaches:

– planning approaches globally aim at producing a plan
of actions over a specified temporal horizon; for ex-
ample, with classical Artificial Intelligence planning
(Fikes & Nilsson 1971; Blum & Furst 1997), models
are organized into models of actions (their conditions
and their effects), actions are assumed to be determin-
istic, and a plan is searched for to go from an initial
state of the system to a goal state which satisfies speci-
fied conditions; when an action fails or the state of the
system differs from the one that was waited for, either a
new plan is built, or the previous one is repaired; plan-
ning, execution, and replanning alternate; probabilis-
tic planning (Kushmerick, Hanks, & Weld 1995) intro-
duces non deterministic actions and slightly modifies
the objective of the planning system: it is no more to
produce a plan that certainly allows the system to go
from the initial state to a goal state; it is now to pro-
duce a plan such that the probability of going from the
initial state to a goal state is the highest;

– sequential decision making approaches aim at deter-
mining, at each instant when an action is possible, the
best action to perform; they can be seen as planning
approaches where the temporal decision horizon is lim-
ited to one action; Markov Decision Processes (MDP)
are a standard model for sequential decision making;
as we saw, MDP models are organized into models of
states, actions, transitions, and gains or costs; the stan-
dard objective is to determine what is called an opti-
mal policy, that is a function that associates with any
possible state of the system and any instant, the ac-
tion that maximizes the expected gain (or minimizes
the expected cost) over the remaining temporal hori-
zon; dynamic programming, value iteration, and policy
iteration are the most known algorithms for computing
off-line, that is before execution, an optimal policy;
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in the context of the deployment and of the maintenance
of a constellation of satellites, one can observe that un-
certainty is high and that the next action to perform can
be decided at each instant; under these conditions, build-
ing a plan over a large horizon seems to be neither useful
nor optimal: it would have a high probability to become
quickly obsolete; a sequential decision making approach
seems to be the most appropriate; note that this approach
does not impose that the optimal or approximately opti-
mal policy be entirely computed off-line: the best action
(or a good action) to perform at each instant can be at
least partially on-line computed, according to the actual
state of the system at this instant;

• simulation-based approaches use the experience that is
provided by either the real life of the system or by a
simulation of this life to learn an approximately opti-
mal policy; the objective is thus similar to the one of
the model-based sequential decision making approaches;
moreover, simulation-based approaches may use or learn
models that are similar to the ones that are used by
the model-based sequential decision making approaches;
thus, the frontier between both these kinds of approach
is rather fuzzy; simulation-based approaches, such as re-
inforcement learning (Sutton & Barto 1998) or neuro-
dynamic programming (Bertsekas & Tsitsiklis 1996),
can be seen in fact as sorts of model-based sequential
decision-making approaches; but, some simulation-based
approaches, such as stochastic optimization (Fu 2001) do
not use any markovian model and aim directly at optimiz-
ing the global cost or gain function, which is a stochastic
function of the policy; in the context of the deployment
and of the maintenance of a constellation of satellites, us-
ing the real life of the system to learn a good quality policy
is out of question, because real experiences are too rare
and too costly, but simulations can be extensively used at
the design phase of the constellation, months before its
actual launch; thus, these approaches may be really rele-
vant.

In (Garcia et al. 2001), the reader can find a comparison
of the results that have been obtained on the maintenance
problem, with two simulation-based approaches: an approx-
imate policy iteration approach and a stochastic optimiza-
tion approach. The best results have been obtained with the
second one. But, we are convinced that these results are still
preliminary and can be greatly improved, for example by a
combination of off-line and on-line computations. We are
also convinced that the main obstacle to overcome is still
the astronomical number of possible states to deal with, es-
pecially when we need to take into account the ages of the
satellites to determine a good quality maintenance policy.
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We are grateful to André Cabarbaye, Linda Tomasini, and
Denis Carbonne from CNES for introducing us in the do-
main of constellation deployment and maintenance. We
would also thank Mathieu Derrey and Ygaël Atlan for pre-
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