
Integrating Hierarchical and Conditional Planning techniques into a software
design process for Automated Manufacturing∗

L. Castillo, J. Fdez-Olivares, A. González
Departamento de Ciencias de la Computación e Inteligencia Artificial

E.T.S. Ingenierı́a Informática. Universidad de Granada
{L.Castillo,faro,A.Gonzalez}@decsai.ugr.es

+34.958.240803,+34.958.240805,+34.958.240596

Abstract

This work presents an AI planning application to assist an
expert to design control programs in the field of Automated
Manufacturing. Authors analyze this domain application,
with the aim of understanding the standard procedures car-
ried out by experts in order to solve control software design
problems. The analysis results in a set of requirements that
have led us to build a hybrid system that integrates POCL,
hierarchical and conditional planning techniques. Its advan-
tages and lessons learnend during its development are also
shown.

Introduction
Automated Manufacturing involves a wide range of activi-
ties, going from plant and product design to operation and
control of manufacturing processes. All of these activities
share a handicap: they have to reduce costs by saving engi-
neering time, and maintaining the reliability of the engineer-
ing process (“do more with less”). Concretely, the design
and development of control software for a manufacturing
system is a key and fundamental issue for the production
of high quality products under an agile, flexible and reliable
process. Thus, the former pure economic need leads to a set
of requirements that has to be met when a control program
is developed: reliability, flexibility and agility for the design
process itself, suitability and robustness for its results.

The design of control software for manufacturing systems
is also a field of application that is attracting the interest
of AI Planning comunity, mainly due to the similarity be-
tween the reasoning processes performed by the planning
techniques so far developped, and those followed by experts
when they solve a design problem. In this sense, AI Plan-
ning provides interesting technological foundations to help
an expert to design a control program.

But developping an AI Planning application for this do-
main, aimed to fit all of its requirements, is a complex task.
First, due to the complexity of this domain, many planning
techniques that are usually developed separatedly (like hi-
erarchical and conditional planning) must be extended and
integrated into a single approach. In addition, it is not suffi-
cient to develop only an integrated planning algorithm, many

∗This work has been supported by the spanish CICYT under
project TAP99-0535-C02-01 and TIC2001-4936-E.

others fundamental issues have to be taken into account,
mainly those concerned with how experts solve problems
in that domain, what requires a deep understanding of the
domain of application.

In this sense, this work presents an AI Planning appli-
cation that integrates hierarchical and conditional planning
techniques for the assisted development of control programs
for manufacturing systems. The paper starts with an anal-
ysis about the standard procedures carried out by experts
when a control program is designed, and the standard for-
malisms used for its representation. This analysis is used to
determine the main requirements to be met by the AI plan-
ning application. Then, the resulting AI planning system,
which integrates POCL, hierarchical and conditional plan-
ning techniques, is described by following an example. In
addition, we explain how to integrate this system into a soft-
ware design environment. Finally, the advantages of using
this system as well as the lessons learned during its develop-
ment are shown.

Domain Application
A Manufacturing system can be thought of as a multiagent
system, whose agents exhibit a behaviour globally coordi-
nated in order to carry out a given process on products. This
behaviour is guided by a control program that an expert de-
signs by hand. As an example, Figure 1 shows a simple man-

Tsoda
V22

T1

Tcl

P1
V11 V12

V21

P22

T2

P3
V31 V32

Water
Neutral

Water

P21

P22P21

S_pH

S_av

UNIT-SODA

UNIT-CL

UNIT-WATER

Figure 1: A manufacturing system that neutralizes water.

ufacturing system made up of several devices (pumps and

28

valves) which can be conceived as agents which perform a
process oriented to neutralize water. The behaviour of these
agents is conditioned by the information supplied by sensors
SpH and Sav. Thus, if the pH of the water contained in the
tank T2 (detected by the sensor SpH) is basic, valves V31
and V32 must be open in order to allow the pump P31 to
transport chlorine from the tank TCL to the tank T2. On the
other hand, if the pH is acidic, valves V21 and V22 must be
open for supplying soda from the tank TSODA to the tank
T2. What is more, the sensor Sav determines which pump
(P21 or P22) is available to transport soda.

Manufacturing standards for software design
At present, in order to perform a reliable design of a program
that controls the operation of a manufacturing system like
the one shown, experts follow the ISA-SP88 standard (ISA
1995), a hierarchical methodology for the specification and
design of hierarchical and modular control programs. This
standard (see Figure 2) allows for a hierarchical specifica-
tion of the physical, process and control model of a manu-
facturing system. Thus, starting from a hierarchical phys-
ical model and from a process specification (which in this
standard is called a recipe) at a high level of abstraction, a
control engineer performs a hierarchical software engineer-
ing process that results in a hierarchical and modular control
program at different levels of granularity.

PROCESS

CELL

Must contain

PROCESS

UNIT

May contain

EQUIPEMENT

MODULE

May contain

CONTROL

MODULE

+ PROCESS

Ordered set of

PROCESS

STEP

Ordered set of

PROCESS

OPERATION

Ordered set of

PROCESS

ACTION

= PROCEDURE

Ordered set of

UNIT

PROCEDURE

Ordered set of

OPERATION

Ordered set of

PHASE

+ =

+ =

+ =

Figure 2: Physical, Process and Control Model of the stan-
dard ISA-SP88.

For example, following this standard an expert would de-
fine three high level process units,UNIT-WATER,UNIT-SODA
and UNIT-CL, which would be composed by lower level de-
vices (see the dotted lines in Figure 1). In addition, the cor-
responding high-level process for every process unit have to
be defined: “neutralize acidic water” for UNIT-SODA, “neu-
tralize basic water” for UNIT-CL, and “supply water” for
UNIT-WATER. Thus, once the control procedure, at the high-
est level of abstraction, for these process units has been de-
signed, the expert continues the design process at a lower
level of abstraction, following a stepwise, top-down refine-
ment process.

Finally, experts also use standard tools as GRAFCET
(IEC 1988) or Petri Nets (Peterson 1981) for the represen-
tation, specification, and validation of the final hierarchical
and modular control program so obtained.

This standard methodology and the tools used by control
engineers to develop control programs are useful and nec-
essary, but they are not sufficient if we take into account
some needs of new generation manufacturing systems as
flexibility, quick response and engineering budget reduction
(PLANET 2001). From the point of view of these needs, the
manual process followed so far has some drawbacks: it is
slow, expensive and subject to human errors and, therefore,
it becomes necessary to improve this process in order to save
more engineering time and, not less important, maintaining
the reliability of the process.

A very good direction for covering these needs consists on
the improvement of this design process by means of AI Plan-
ning techniques (PLANET 1998; PLANET 2001). Although
presently it is in an initial state, interesting approaches
based on these techniques have been carried out in the
last few years (Aylett et al. 1997; Castillo, Fdez-Olivares,
& González 2000a; Klein, Jonsson, & Backstrom 1998;
Nau, Gupta, & Regli 1995; S.Viswanathan et al. 1998),
which are proving to be very useful, allowing for an error-
free, fast and low-cost building process of control programs.

The improvement of the design process of a control pro-
gram, by means of AI Planning techniques, can be easily
understood if we rely on the similarity between the concept
of plan and program. Thus, a SP88-based software engineer-
ing process, that receives as input the physical model and a
high-level process specification of a manufacturing system,
is comparable to a planning process which receives as input
a knowledge-based description of a manufacturing system,
and a high-level problem specification. Therefore, the plans
obtained by such a process can be considered as control pro-
grams for the manufacturing system described.

AI Planning Application Requirements

The SP88 standard can be seen as a hierarchical problem
solving strategy followed by control engineers for the de-
sign of a hierarchical control program. Therefore, it is clear
that any planning approach aimed to fit present manufactur-
ing standards must be developed under a hierarchical plan-
ning paradigm, in which the planning knowledge described
in the domain description stage is hierarchically structured.
Furthermore, in order to consider the plans so obtained as
truly realistic and operational control programs, the plan-
ning approach must also represent and manage incomplete
knowledge. Thus, the planning techniques applied should
lead to the synthesis of plans that incorporate the informa-
tion supplied by sensors and capable of describing alterna-
tive courses of actions to deal with foreeseable contingencies
(that is, closed-loop, robust, conditional plans).

Apart from these crucial application requirements, we
have also to take into account the following ones, referred
to the way in wich an expert works:

• Expressiveness: the ontology used to represent planning
domains must be expressive enough to neatly represent
evey crucial aspect in this domain. In addition, some kind
of assisting tool should be provided in order to facilitate
expert tasks like domain description or posing high-level
problems.

29

ROOT

UNIT-WATER UNIT-SODA UNIT-CL

V12 P1 V22 V21 V22P21 P22 V31 V32P3

open shut

open

closed

open shut

open

closed

turn-on

turn-off

on

off

turn-on

turn-off

on

off

turn-on turn-off

on

off

turn-on turn-off

on

off

............................

turn-on

turn-off

on

off

turn-on

turn-off

on

off

turn-on

turn-off

on

off

turn-on

turn-off

on

off

S_pH S_avS_pH S_av

S_pHS_pH

SENSORS HIERARCHYAGENTS HIERARCHY

is part of
is part ofis part of

is an abstraction of

Figure 3: A compositional hierarchy of agents, and a sensor hierarchy representing a knowledge-based description of the layout
of the manufacturing system shown in Figure 1

• Mixed autonomy: the expert may require the system to be
capable of autonomously making as many complex de-
cisions as possible. However, in some cases the expert
might require to have a complete control over the sys-
tem. In any case, it is necessary to find a balance between
complete autonomy and an agile and interactive process,
facilitating and reducing the human effort in both, domain
description and problem solving phases.

• Suitability of the results: the plans obtained should be di-
rectly (easily) translated into known control-specification
formalisms (Petri Nets (Peterson 1981) or Graphcets
(IEC 1988)). This would mean that either the final plans
or the intermediate plans (considering a mixed-autonomy
planning process) should also be understandable by hu-
man experts, what should facilitate both, the justification
of the decisions made, and the human interaction with the
system.

It is well known that all of these requirements are very
difficult to satisfy if one focus only in one single planning
technique to cope with the real domains here addressed. On
the one hand, it is well known that the use of pure HTN
(Yang 1997) techniques in manufacturing applications (Nau,
Gupta, & Regli 1995; S.Viswanathan et al. 1998), leads to
the development of planning approaches in which the man-
agement of a great amount of procedural knowledge reduces
the deliberative capabilities of the planner and, in addition,
increases the expert effort in the description of domains
(Biundo & Schattenberg 2001; Castillo, Fdez-Olivares, &
González 2001; Kambhampati, Mali, & Srivastava 1998).
This also results in a weak concept of autonomy: plan con-
struction can only rely on the procedures introduced, so gen-
eral problem solving capabilities are strongly limited.

On the other hand, POCL-based (Weld 1994) approaches
supply general problem solving capabilities, what is use-
ful to increase the degree of autonomy, and they offer a
sound semantical basis for obtaining correct plans, that can
be translated into suitable representation formalism of con-
trol software (Castillo, Fdez-Olivares, & González 2000a;
2000b). However, they lack of the necessary hierarchical
framework to follow present industrial standards, therefore,

a POCL planning process is not so suitable as one could
wish.

Finally, it seems that conditional (or contingent)(Onder &
Pollak 1999; Pryor & Collins 1996) planning is a very ap-
propriate technique for a realistic design of robust control
software (Bresina et al. 2002; Castillo, Fdez-Olivares, &
González 2002). However, these techniques are scarcely ap-
plied in automated manufacturing operation. Concretely, we
are not aware of any application of these techniques to au-
tomated manufacturing. The reason is that conditional ap-
proaches rely on a very simple model of non-durative ac-
tions in which concurrent actions are not allowed, and they
do not scale up to large problems, what affects negatively
to the agility and reliability of a planning application in this
real domain.

Next we will show how most of these requirements can
be met by means of the integration of a hybrid hierarchical
planning approach introduced in (Castillo, Fdez-Olivares,
& González 2001), and a conditional planner presented in
(Castillo, Fdez-Olivares, & González 2002). Then, we will
show how to integrate this system into a software desing en-
vironment in order to solve software design problems fol-
lowing standard manufacturing procedures.

Integrating hierarchical and conditional
planning

According to the concepts previously explained, a planning
domain is described as a compositional hierarchy of agents,
where agents are described at different levels of abstraction,
and their behaviour is described as a finite state automaton.
Agents at the lowest level of the hierarchy are called prim-
itive agents, and higher level agents are called compound
agents, in such a way that a relationship of type is-part-of is
defined between them.

Another key entities in the domain ontology are sensors,
used to represent those sources of uncertainty of the real-
world that can be detected by sensory equipment and such
that they affect the behaviour of agents and their influence
may be somehow foreseeable. Sensors are also hierarchi-
cally distributed in a sensor hierarchy, different from the

30

agent hierarchy, where every level of abstraction i contains
a set of sensors that affect the agents of level i. Such a hier-
archy is built by an expert, at the domain description stage,
following a simple rule: given a compositional hierarchy of
n levels of abstraction, the whole set of sensors must appear
in the lowest level of the sensor hierarchy (the level n), and
for the remaining levels, every level i may contain a smaller
set of sensors than the level j, i < j, by simply dropping
sensors from level j.

The compositional hierarchy of agents and the sensor hi-
erarchy for the example explained above are shown in Fig-
ure 3. In this figure, we can see that the expert has de-
cided that the behaviour of agents of the highest level (whose
behaviour is much simpler than that of their components)
can only take into account the existence of the sensor of
pH (avoiding the influence of the sensor of availability of
pumps) what should simplify the design process for a high-
level control procedure for the neutralization of water.

Thus, starting from such as domain description, the gen-
eral idea underlying the planning process is very well known
and assimilable by any expert: the design and development
of a hierarchical and closed-loop control program corre-
sponds to the construction of a hierarchical and conditional
plan whose different levels of abstraction are conditional
plans, and whose actions are represented at different levels
of granularity. Thus, every conditional plan at a level of ab-
straction i, is built on the basis of a POCL and conditional
process. Its abstract actions can be seen as high-level mod-
ules, containing conditional structures between them, used
for making level-i decisions, according to the sensors used
at level i. Furthermore, every abstract action α at level i will
be later decomposed into a set of causal actions with con-
ditional structures, at level i + 1, inside the scope of that
high-level module α. As a consequence, the final result is a
very close representation of a modular, conditional control
program, built under a top-down process following current
industrial standards.

Next, we will describe in detail the most relevant aspects
of the planning entities, as well as the conditional and hier-
archical process.

Basic concepts on the planning entities
Every sensor is associated with a discrete set of possible
states. For example, the sensor of pH is represented as a
sensor, SpH , which can take one of the following states
{Acidic,Neutral, Basic} . The sensor of availability Sav,
can take one of the states {1, 2} and informs about the avail-
ability of either pump P21 or pump P22.

As described above, the problem consists on obtaining
neutral water in the tank T2. The recipe for this high-level
process is represented by the two high-level goals (PH neu-
tral) and (CONTAINS water T2). In addition, it is important
to take into account that the pH is initially unknown, but
suitable to be detected by the sensor SpH . This is repre-
sented in the initial state, at the level of abstraction 1, by
means of the literal (PH !ph), where !ph stands for a run-
time variable used to represent the incomplete knowledge
about the pH of the water. A run-time variable is always
associated with a sensor, in such a way that every possi-

ble value of the variable is associated with a single possible
state of its sensor. Thus, in this case, the domain of !ph is
{Acidic,Neutral, Basic}. In addition, since sensors are
hierarchically distributed and SpH is the only sensor de-
scribed at level 1, the sensor of availability do not affect to
the planning process at this level of abstraction.

The behaviour of every agent is represented by means of
a finite state automaton where states represent internal states
of the agent and transitions represent causal actions that the
agent might execute. Every action can be either primitive
or compound (depending on which agent it is attached to,
compound or primitive), and they share the same structure
at every level of abstraction: a set of previous, simulta-
neous, and query requirements (Castillo, Fdez-Olivares, &
González 2000a) which represent different types of condi-
tions that must hold in order to execute the action, and a set
of effects describing changes in the environment and in the
internal state of the agent.

Furthermore, every primitive or compound action is dura-
tive (Fox & Long 2002), in such a way that the duration of an
action a is represented as an interval of actions, [a, End(a)],
defined from a until another action b = End(a). Both ac-
tions belong to the same agent g and they are such that they
produce a consecutive change of state in g. Simultaneous re-
quirements are then used to represent conditions which must
hold during an interval of actions (like invariant conditions
in PDDL 2.1).

END

(PH neutral)

ON(UNIT-SODA)

(PH acidic)

START

(PH !pH)
(PH acidic)

{(KNOWN SpH acidic)}
Unify

Figure 4: Unification of literals with run-time variables

Causal actions can also produce different effects depend-
ing on states of sensors. For example, the dummy action
START is a causal action that contains a literal with a run-
time variable in its effects which represents the partially
known initial state (see Figure 4). This introduces the prob-
lem of how to represent at planning time both, the set of
possible outcomes of a causal action, and the conditional
courses of action induced by the states of sensors.

Decide actions are used to cope with these issues. A de-
cide action is also associated with a sensor, and it is automat-
ically generated at planning time when a non-deterministic
causal action (which may be either the action START or any
other action of an agent) is used to satisfy an open condition.
For example, let us consider the top of the hierarchy shown
in Figure 3 and suppose that the action ON(UNIT-SODA) has
been inserted to satisfy the highest level goal (PH neutral).
Then, its open precondition (see Figure 4) may be covered
by the non-deterministic action START. However, depend-

31

ing on the state of the sensor SpH this action will result
in one of the following possible outcomes: (PH acidic),(PH
neutral), or (PH basic). Therefore a decide action associated
to the sensor SpH is generated and attached to the action
START, representing both, its possible outcomes, and the
three possible courses of action depending on the state of
the sensor of pH (See Figure 5).

END

(PH neutral)

ON(UNIT-SODA)

(PH acidic)

START

(PH acidic)

{(KNOWN SpH acidic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH basic)

{(KNOWN SpH basic)}

Case(SpH)

Figure 5: A decide action and the possible outcomes of ac-
tion START

Another key issue is concerned with the unification of lit-
erals containing run-time variables. In the previous exam-
ple, the planning process detects that the action START is
a producer for the open condition of the action ON(UNIT-
SODA) by means of the unification of the literals (PH !ph)
and (PH acidic) (See Figure 4). This unification results in a
literal completely instantiated, (PH acidic) but, indeed this
literal will represent an executability condition of the action
ON(UNIT-SODA) only when the sensor SpH is in the state
acidic. That is, the literal will be true and, therefore, the ex-
ecution of the high level action ON(UNIT-SODA) will be pos-
sible, only when the sensor SpH is known to be in the state
acidic. This means that sensors restrict the executability of
actions, what leads us to introduce the concept of knowledge
restrictions in order to represent this sensor-dependency.

A knowledge restriction is represented as a special literal
(KNOWN σ u), where σ stands for a sensor and u for one of
its possible states, and they become an important part of an
annotated representation of literals: a literal is represented
as (atom . kr) where atom stands for the atom of l and kr
stands for a set of knowledge restrictions. For example (see
Figure 4), the resulting literal of the previous unification is

((PH acidic).{(KNOWN SpH acidic)})

and it is interpreted as the literal is true (the pH is acidic),
when the sensor SpH is in the state acidic1. It is impor-
tant to note that knowledge restrictions are not described by
the expert, but generated at planning time whenever a run-
time variable unifies with a constant. Therefore the con-
cept of knowledge restrictions introduces new modes of sat-
isfaction, the fundamental mechanism of the one-level con-
ditional planning algorithm that we will illustrate next.

1An empty set of knowledge restrictions, of a literal or an ac-
tion, means that no sensor restricts them.

The one-level conditional planning process
Every level of abstraction i in the compositional and sen-
sor hierarchy represents a piece of the domain that is given
as input to a conditional planning algorithm (called AD-
VICE (Castillo, Fdez-Olivares, & González 2002)) that has
to build a level-i correct conditional plan . That is, a plan
containing conditional structures and whose causal actions
are all executable in some context. A causal action is exe-
cutable when all its preconditions are satisfied by the effects
of another causal action. As seen above, the satisfaction of
the literals that represent preconditions is based on an unifi-
cation algorithm that might produce new knowledge restric-
tions. As a consequence, the concept of knowledge restric-
tions introduces new modes of satisfaction that are worth to
note.

It can be seen in Figure 5 that the set of knowledge restric-
tions of an instantiated effect of the non-deterministic action
START subsumes the set of knowledge restrictions of an in-
stantiated precondition of ON(UNIT-SODA), this is a mode of
literal satisfaction called possible satisfaction. As explained
above, the execution of ON(UNIT-SODA) is only possible in
the conditional context in which the sensor SpH is known
to be in the state acidic. Hence, in order to describe that this
action can only be executed in such as conditional context,
the set of knowledge restrictions {(KNOWN SpH acidic)}
is propagated forwards, towards the action ON(UNIT-SODA)
and its effects (actions are also annotated with knowledge
restrictions to represent the conditional context where they
have to be executed). This propagation is recursively per-
formed throughout the causal structure of a conditional plan
(See Figure 6).

END

(PH neutral)

{(KNOWN SpH acidic)}

ON(UNIT-SODA)

{(KNOWN SpH acidic)}

START

(PH acidic)

{(KNOWN SpH acidic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH basic)

{(KNOWN SpH basic)}

Case(SpH)

Figure 6: Forward propagation of knowledge restrictions.

However, there are some situations in which the forward
propagation is not further possible (for example, in the case
of the goal literal (PH neutral)). Thus, in these cases we
interpret that the literal cannot be completely satisfied in
the single context represented by the knowledge restrictions
being propagated ({(KNOWN SpH acidic)}) and that it
should also be satisfied in all of the complementary contexts
with respect to this set, that is, {(KNOWN SpH basic)}
and {(KNOWN SpH neutral)}. As a way to support this
necessary satisfaction of a literal, we use the concept of con-
ditional expansion of a literal: a set of annotated literals rep-
resenting all the disjoint contexts (branches) which have to
be considered to achieve a same goal (Figure 7 shows the
conditional expansion of the literal (PH neutral), referred to

32

the forward propagated knowledge restrictions).

END

(PH neutral)

{(KNOWN SpH acidic)}

ON(UNIT-SODA)

{(KNOWN SpH acidic)}

START

(PH acidic)

{(KNOWN SpH acidic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH basic)

{(KNOWN SpH basic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH neutral)

{(KNOWN SpH basic)}

(PH neutral)

Case(SpH)

Figure 7: Conditional expansion of a literal

This conditional expansion has also a very important role:
the set of literals so obtained represents a set of open con-
ditions that have to be satisfied in every different condi-
tional context, therefore, every literal generates a conditional
branch, inside a conditional plan, that will be built by means
of a POCL regressive process.

Figure 8 shows both concepts: how these conditional
branches are generated by the conditional expansion of the
goal (PH neutral), and how every expanded literal is satisfied
in every different branch. As can be seen in this Figure, the
set of knowledge restrictions of an instantiated effect of the
causal action ON(UNIT-CL) is already included in the set of
knowledge restrictions of the conditionally expanded literal
(PH neutral). This is a mode of literal satisfaction called cir-
cumscribed satisfaction. This means that the literal will only
be true when the action ON(UNIT-CL) is executed under
the conditional context represented by the set of knowledge
restrictions {(KNOWN SpH basic)}.

END

(PH neutral)

{(KNOWN SpH acidic)}

ON(UNIT-SODA)

{(KNOWN SpH acidic)}

START

(PH acidic)

{(KNOWN SpH acidic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH basic)

{(KNOWN SpH basic)}

Case(SpH)

(PH neutral)

{(KNOWN SpH neutral)}

(PH neutral)

{(KNOWN SpH basic)}

(PH neutral)

ON(UNIT-CL)

(PH ?x)

Figure 8: Cirumscribed satisfaction.

Because of this, the knowledge restrictions of the unifica-
tion must be propagated backwards, back to the consumer
action (See Figure 9). When the knowledge restrictions are
propagated, the open precondition of the action ON(UNIT-
CL) is also satisfied in a circumscribed mode by the ac-
tion START (throughout the decide action associated to the
sensor SpH). Finally, when all of the expanded literals of
the conditional expansion of the goal (PH neutral) are com-
pletely satisfied in a circumscribed mode, it is said that this
literal is necessarily satisfied.

END

(PH neutral)

{(KNOWN SpH acidic)}

ON(UNIT-SODA)

{(KNOWN SpH acidic)}

START

(PH acidic)

{(KNOWN SpH acidic)}

(PH neutral)

{(KNOWN SpH neutral)}

(PH basic)

{(KNOWN SpH basic)}

Case(SpH)

(PH neutral)

{(KNOWN SpH neutral)}

(PH neutral)

{(KNOWN SpH basic)}

(PH neutral)

ON(UNIT-CL)

{(KNOWN SpH basic)}

(PH basic)

{(KNOWN SpH basic)}

Figure 9: Backward propagation of knowledge restrictions.

END

ON(UNIT-SODA)

{(KNOWN SpH acidic)}

START

Case(SpH)

ON(UNIT-CL)

{(KNOWN SpH basic)}

OFF(UNIT-SODA)

{(KNOWN SpH acidic)}

OFF(UNIT-CL)

{(KNOWN SpH basic)}

ON(UNIT-WATER)

OFF(UNIT-WATER)

Figure 10: The final conditional plan at level 1.

Thus, the final conditional plan so obtained is shown in
Figure 10. This plan contains several compound causal ac-
tions, that can be seen as high-level modules of a more de-
tailed hierarchical program, and a single conditional struc-
ture, made up of the decide action CASE(SpH), that is used
to represent that, at running time, a conditional decision on
the known state of the sensor SpH has to be made: in the
case of this state to be acidic, the unit process UNIT-SODA
will be turned on in order to neutralize the water in the tank
T2, in the case of the state to be basic the unit process
UNIT-CL will be turned on, and nothing has to be done
in the case that the pH is neutral.

In addition, in order to represent the causal structure of a
conditional plan, at a single level of abstraction, the follow-
ing types of causal links are used:

• Possible link: they are causal links used to protect a lit-
eral that belongs to a conditional expansion. These causal
dependencies are very important in the conditional plan-
ning process because the literals so protected represent a
stop condition for the forward propagation of knowledge
restrictions. Thus, not only the final action of a plan is
a stop condition for the recursive forward propagation of
knowledge restrictions, but also any action supported by a
possible link, what provides the support for creating con-
ditional nested branches.

• Normal link: they are used to protect any other literal in
the plan.

Finally, the conditional planning algorithm is based on a
planning by refinement paradigm where the following re-
finement tasks may arise:

• Threats, that are solved by promotion or demotion on the
different types of causal dependencies.

33

• Open conditions, that are solved depending on the mode
in which an action satisfies an open condition, that is

1. in the case of a circumscribed mode, a backward prop-
agation of knowledge restrictions is performed

2. in the case of a possible mode, a forward propagation is
performed recursively throughout the causal structure.
But, it is important to take into account that those lit-
erals in which recursive propagation is not possible are
recorded into a set of fails.

In addition, if an open condition is solved by a non-
deterministic action with an unknown effect (containing a
runtime variable) a decide action is generated (or reused)
to represent in the conditional plan the possible outcomes
of that non-deterministic action.

• Conditional branching: when the forward propagation of
knowledge restrictions associated to a literal fails, it will
be used to build new conditional branches by means of
its conditional expansion, so every newly expanded literal
becomes an open condition for every new branch.
This conditional planning algorithm presents some fea-

tures that make it suitable for its application to the domain of
interest in this work: it is based on an very expressive model
of actions, where actions are durative; non-deterministic ac-
tions are dynamically managed at planning time and there
is no need to know all their possible outcomes at domain
description or planning time; finally, conditional plans ob-
tained are represented as a DAG and not as a tree, like most
of conditional approaches (Weld, Anderson, & Smith 1998).
These features, together with the conditional process, will
allow to meet requirements as robustness, reliability and
suitability of the results.

Once a conditional plan at the highest level of abstraction
(level 1) has been built, a stepwise hierarchical refinement
is performed on every action at this level, in order to build
a more detailed conditional plan (at level 2). As we will
see in next section, the integration of this algorithm into a
hybrid hierarchical process will lead to a conditional plan-
ning process that also meets requirements like expressive-
ness, agility, and scalability to large problems.

Decomposition of high-level modules
Every compound action α at a level of abstraction i has at-
tached a set of expansion methods, where every expansion
method is a set of literals, at level i + 1, representing sub-
goals to be achieved by actions at level i + 1. The set of
literals of a given expansion method mj , of a compound
action α attached to a compound agent g, are obtained at
planning time by means of an articulation function(Castillo,
Fdez-Olivares, & González 2001) that translates the level-i
effects of α into a set of level-(i + 1) literals. The applica-
tion of this articulation function, for every compound agent
g, is supported by the interface of g: a set of association
rules included by an expert at the domain description stage
to describe how the level-i literals of every compound ac-
tion, attached to g, are related with level-(i + 1) literals.

For example, the interface of the agent UNIT-SODA may
contain the following association rule:
(PH neutral) → {(FLOW soda TSoda T2), (CONTAINS soda T2)}

meaning that the high-level effect ”UNIT-SODA has neutral-
ized the pH” of action ON(UNIT-SODA) is translated into a
more detailed goal (at a greater granularity) ”obtain a flow of
soda between TSODA and T2, and supply soda to tank T2”,
which has to be achieved by actions of agents at the level of
abstraction 2.

Furthermore, since actions and literals at a given level
of abstraction i may be annotated with knowledge restric-
tions coming from upper levels, actions and literals of level
i + 1 may inherit these knowledge restrictions thanks to
the articulation function, by means of a simple process.
For example, at level 1, action ON(UNIT-SODA) and its ef-
fects are annotated with the set of knowledge restrictions
{(KNOWN SpH acidic)}, hence the result of the transla-
tion of this literal is the set of literals

{(FLOW soda TSoda T2) .{(KNOWN SpH acidic)},

(CONTAINS soda T2). {(KNOWN SpH acidic)}}

by simply copying the set of knowledge restrictions from
level 1 to level 2.

This mechanism for both, the translation of literals and the
inheritance of knowledge restrictions, across different levels
of abstraction, allows every compound action α, at level i, to
be dynamically decomposed into a set of subactions at level
i + 1, following two steps:

1. Determine the set of annotated literals at the next level
i + 1 which have to be achieved by actions of agents at
that level.

2. Determine, by means of POCL-based techniques, the set
of actions such that either they satisfy those literals gener-
ated by α or they contribute to their establishment. These
actions will make up the real decomposition of α.

While the first step is a simple translation mechanism
(mainly supported by the articulation function), the second
one is a key step for the construction of a hierarchical plan
(that finally will be used as a hierarchical control program),
and for understanding the advantage of using a hybrid ap-
proach. At this step a modularity relationship between two
plans Si and Si+1 at different abstraction levels is estab-
lished, so that every action in S i is mapped into a disjoint
set of actions of Si+1. The hybrid hierarchical process uses
the function Scope(a), to represent the “is composed by” hi-
erarchical relationships between actions. The definition of
this function is based on a regressive process of literal satis-
faction wich includes the propagation processes of knowl-
edge restrictions above described. Thus, it is possible to
dynamically generate, at planning time by means of POCL
and conditional techniques, the set of subactions for a given
compound action at level of abstraction i. Summarizing, the
scope of an action a, namely Scope(a), is a higher level ac-
tion α if one of the following conditions holds:

1. a establishes one or more literals generated by different
higher level actions, {α1, . . . , αn}, and α is one of the
first actions of this set (See Figure 11).

2. a establishes several requirements of actions at its same
level, {a1, . . . , an}, and α is the scope of one of the first
actions of this set (See Figure 12).

34

ON(UNIT-SODA)

kr
Level i-1

Level i

ON(P21)

kr

Scope

(PH neutral)

kr

(FLOW soda TSoda T2)

kr

(CONTAINS soda T2)

kr

(Available P21)

kr

kr={(KNOWN SpH acidic)}

Articulation

Function

Figure 11: Dynamically deciding the scope of an action
(Condition 1).

ON(UNIT-SODA)

kr

Articulation

Function

Level i-1

Level i

ON(P21)

kr

Scope

(PH NEUTRAL)

kr

(FLOW soda TSoda T2)

kr

(CONTAINS soda T2)

kr

(Available P21)

kr

kr={(KNOWN SpH acidic)}

Case(Sav)

Scope

START
(Available P22)

kr

Figure 12: Dynamically deciding the scope of an action
(Condition 2).

Figures 11 and 12 also show how knowledge restrictions
can be inherited from a level i to a level i + 1, and how
they can be propagated throughout the actions of level i+1.
That is, when the level-2 action ON(P21) satisfies in a cir-
cumscribed mode the translated literal, the backward propa-
gation of knowledge restrictions ensures that all the actions
inside the scope of the high-level module ON(UNIT-SODA)
will be executed in its same conditional context. On the
other hand, due to the existence of new sensors at the level
2, the incomplete initial state a this level is increased, what
allows for the introduction of new decide actions inside the
scope of the action ON(UNIT-SODA), resulting in a condi-
tional plan with nested and well organized conditional struc-
tures.

This decomposition process preserves the expressiveness
of decomposition rules of other models, that is, it allows for
alternative action decompositions, but it improves them be-
cause it allows a compound action to be related with sub-
modules and conditional structures of different grain size.
Additionally, it does not require to know the modular de-
composition of every compound action prior to the plan-
ning process (during domain description stages), and in most
cases the only required knowledge is the interface of every
compound agent, covering much better requirements of sim-
plicity and autonomy.

It must also be said that “abstract” decide-actions used to
represent high-level conditional structures, at a given level
i, are directly copied into the next level of abstraction i + 1.
Thus, the conditional structure of a conditional plan at level
i is completely inherited by its next level of abstraction.

Another feature of this mechanism is that the correctness
of a decomposition does not have to be checked “a priori” by
hand during domain description. Instead of this, this task is

shifted into the planning process who becomes the respon-
sible of dynamically checking the correctness of every de-
composition at every level of abstraction.

Guaranteeing the correctness of a hierarchical plan
The dynamical decomposition introduces the problem of
how to determine, at planning time, that a decomposition is
valid. That is, not every syntactically valid modularization is
also a semantically valid one, so a set of criteria which fea-
ture semantically valid modularity relationships should be
defined taking into account the following issues:

• Every action at level i + 1 must be related to an action at
level i.

• A decomposition of an action should not have any internal
irresoluble conflict.

• Subactions should not interfere with the higher-level ef-
fects of the action whose decomposition they belong to.

In HTN approaches these issues are responsibility of the
human who writes a domain description, decreasing the au-
tonomy of the planner, and assigning the most important task
of domain validation to the control engineer. This shift in
responsibility could be avoided by defining general seman-
tic properties which must be satisfied by any modular de-
composition, and giving more responsibility to the planner
to check these semantic properties and, therefore, to find a
valid decomposition. Then, our planner, named ADVICE-
H , decides whether a decomposition is valid just by looking
for harmful causal interactions between actions at the same
level of abstraction (by means of classical POCL techniques
(Castillo, Fdez-Olivares, & González 2001)), and also be-
tween actions at different abstraction levels.

With respect to causal dependencies between actions at
different levels of abstraction, the concept of hybrid causal
link is used (Castillo, Fdez-Olivares, & González 2001). A

hybrid causal link [aα
l
→β, γ] is a structure used to represent

that a literal expanded by α and satisfied by aα, a subac-
tion of α, has to be protected from any other subaction of
α, in such a way that none of these subactions could negate
that literal. Hybrid causal links are also used to detect and
solve hybrid threats, which take into account the existence
of interactions between actions at different levels of abstrac-
tion. Hence, the causal consistency across different levels of
abstraction, and the correctness and reliability of the hierar-
chical process is guaranteed.

Finally, following the planning process described, a hi-
erarchical, modular, and conditional plan is obtained as the
one shown in Figure 13. As can be seen, the high-level mod-
ules at level 1 has been decomposed into lower-level actions
and they also contain encapsulated conditional structures.

Integration into a software development
environment

Apart from the above described hybrid hierarchical and con-
ditional planning process, our system incorporates some
functionalities which help to facilitate its integration into
a real integrated development environment for control soft-
ware.

35

END

ON(UNIT-SODA)

kr11

START

Case(SpH)

OFF(UNIT-SODA)

kr11

OPEN(V21)

kr11

ON(P21)

kr11,kr21

OFF(P21)

kr11,kr21

ON(P22)

kr11,kr22

OFF(P22)

kr11,kr22

Case(Sav)

OPEN(V22)

kr11

SHUT(V22)

kr11

SHUT(V21)

kr11

ON(UNIT-CL)

kr12

OFF(UNIT-CL)

kr12

OPEN(V31)

kr12

ON(P3)

kr12

OFF(P3)

kr12

OPEN(V32)

kr12

SHUT(V32)

kr12

SHUT(V31)

kr12

ON(UNIT-WATER)

OFF(UNIT-WATER)

OPEN(V11)

ON(P1)

OFF(P1)

OPEN(V12)

SHUT(V12)

SHUT(V11)

kr11 = (KNOWN SpH acidic)

kr12 = (KNOWN SpH basic)

kr21 = (KNOWN Sav 1)

kr22 = (KNOWN Sav 2)

Figure 13: The final hierarchical plan for the problem for-
merly introduced.

First, from the point of view of the expert at the input
stage, the elaboration of a SP88-specification of a plant lay-
out is simplified by means of a Library of agents where
generic agents with generic behaviour are defined. Thus,
describing a new agent as part of a given plan layout can be
seen as a drag and drop process in which the expert takes a
generic agent from the Library and then he/she instantiates it
with specific knowledge for that concrete plant. This kind of
assisting tool simplifies domain description tasks and should
allow for a reduction of the time expent in this stage.

Second, at the planning-process stage, ADVICE-H in-
corporates a visual interface that allows an expert to inter-
act during both, the knowledge description phase and the
problem-solving phase, in such a way that the expert can
guide the problem solving phase. Thus, due to the hier-
archical planning process, and the hierarchical distribution
of sensors at different levels of abstraction, the expert can
help ADVICE-H either to make complex conditional deci-
sions at higher levels of abstraction, or to organize the nested
conditional structures. On the other hand, ADVICE-H can
help the expert in lower-level complex reasoning processes,
showing what whould happen when an explicit decision is
taken (“what-if” exploration). For example, ADVICE-H
might decide the right set of valves to be open given that a
high-level task of transportation has been determined, thanks
to its capability to dynamically obtain the decomposition of
a high-level task.

Finally, with respect to the output stage, ADVICE-H
is based on a POCL planning process capable of translat-
ing every plan obtained at every level of abstraction into
known standard formalisms of control software, as Graphcet
(Castillo, Fdez-Olivares, & González 2000a) of Petri Nets
(Castillo, Fdez-Olivares, & González 2000b). Thus the suit-
ability of the hierarchical conditional plans obtained offers a

double advantage: the expert not only will be able to under-
stand much better the results presented at different levels of
abstraction, but also the plans can be translated level by level
into known formalisms for the specification of control pro-
grams, what allows ADVICE-H to bridge the gap between
the planning techniques used and a real software develop-
ment environment.

Advantages from the application perspective

Problem Domain size Sensors Plan lenght CPU time
1 12 agents 2 25 400sg
2 27 agents 5 53 1100sg
3 11 agents 2 34 200sg
4 28 agents 1 61 157sg

Table 1: Experimental results of ADVICE-H in several
control software design problems for different manufactur-
ing systems.

Table 1 shows some results about the performance of
ADVICE-H seen as an autonomous planning system to
solve control software design problems. Problem 1 is the
problem ilustrated in this paper and Problem 2 is an exten-
sion of this manufacturing system with the same high-level
process but more complex subprocesses. Problem 3 con-
sists on a transportation problem with a single resource to
be shared, and where the content of the source tanks is un-
known. Problem 4 is a more complex manufacturing system
in which the process carried out depends on the product to
be obtained.

These results show that ADVICE-H is not as efficient as
the planners that take part in the planning competition. How-
ever ADVICE-H is not intended to work autonomously,
but following an interactive process with the expert in or-
der to solve a control software design problem. In this case,
the time expent by ADVICE-H is not significant compared
with the time an expert takes to design a correct and ro-
bust control program (it may take hours, even days). In this
framework, ADVICE-H can be used either as an off-line
rapid prototyping assisting tool for a new given design prob-
lem, or as an off-line rapid reconfiguration tool, in case of
any modification of the plan layout.

Thus, the main advantage of using ADVICE-H comes
from its usage as a tool that saves engineering time, fol-
lowing the same standard processes than those followed by
manufacturing experts. This is specially important if we take
into account that the task of designing and developing a con-
trol program represents a 35 percent of the whole control
operation costs in a manufacturing system (the 40 percent
corresponds to hardware costs and the 25 percent to comis-
sioning).

Therefore, we argue that the capability of obtaining sound
results, shown in an understandable manner, following a re-
liable, mixed-autonomous hierarchical/conditional process,
on an expressive knowledge representation, are AI Planning
technological developments that reduce that great percent-
age of engineering time, and that will be welcome in man-
ufacturing business, although the time performance of the

36

techniques here presented is not optimal with respect to the
average of planners in the planning competition.

Conclusions and lessons learned
In this work we have presented a completely novel AI plan-
ning application that integrates POCL, hierarchical and con-
ditional planning techniques, in order to fit a set of ana-
lyzed requirements which have to be met by the design of
control programs in the field of Automated Manufacturing.
Although the integration of these techniques may overcome
some shortcomings detected in the application of previously
developed AI Planning technology to this field, we have
shown that this is not sufficient if one take into account the
way in wich experts solve design problems. Therefore, the
core of the system has had to be extended with other capabil-
ities in order to fit present manufacturing standards: a tool to
facilitate domain descriptions, an interface that supports an
interactive problem solving process, and the necessary trans-
lation mechanisms to obtain understandable plans. All of
these techniques are intended to reduce the negative impact,
produced on the experts, due to the use of new technologies
for solving known complex problems.

During the development of this application some lessons
have been learned: first, it is necessary to have a deep under-
standing of the domain application in order to face the chal-
lenge to develop real-world AI Planning techniques. This in-
volves to know the standard procedures followed by experts
in order to perform reliable planning processes from their
point of view. In addition, we have realized that not always
standard planning languages are ready-to-use tools for real-
world. For example, neither the use of sensors, nor the com-
positional hierarchy of agents, nor the dynamical decompo-
sition of abstract actions are addressed in current standard
planning laguages, however, they are key issues that facili-
tate many expert tasks in the design of control programs for
manufacturing systems.

References
Aylett, R.; Petley, G.; Chung, P.; Soutter, J.; and Rushton,
A. 1997. Planning and chemical plan operation procedure
synthesis: a case study. In Fourth european conference on
planning, 41–53.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief. a preliminary report on flexible integra-
tion on nonlinear and hierarchical planning. In Proceedings
of 6th European Conference on Planning (ECP-01).
Bresina, J.; Dearden, R.; Meuleau, N.; Smith, D.; and
Washington, R. 2002. Planning under continuous and re-
source uncertainty: A challenge for AI. In Proceedings of
AIPS02. Workshop on temporal domains., 91–97.
Castillo, L.; Fdez-Olivares, J.; and González, A. 2000a.
Intelligent planning of grafcet charts. Journal of Robotics
and Computer Integrated Manufacturing systems 16:225–
239.
Castillo, L.; Fdez-Olivares, J.; and González, A. 2000b. A
three-level knowledge-based system for the generation of
live and safe petri nets for manufacturing systems. Journal
of Intelligent Manufacturing 11(6):559–572.

Castillo, L.; Fdez-Olivares, J.; and González, A. 2001. On
the Adequacy of Hierarchical Planning characteristics for
Real-World Problem Solving. In Proceedings of the Sixth
European Conference on Planning ECP-01.
Castillo, L.; Fdez-Olivares, J.; and González, A. 2002. A
conditional approach for the autonomous design of reactive
and robust control programs. In Sixth International Confer-
ence on AI Planning and Scheduling AIPS02. Proceedings
of the Whorkshop on Real-World Planning.
Fox, M., and Long, D. 2002. PDDL2.1: An extension to
PDDL for modelling time and metric resources. In Pro-
ceedings of AIPS-02.
IEC. 1988. Preparation of function charts for control
systems. Technical Report IEC-60848, International Elec-
trotechnical Commission.
ISA. 1995. Batch control Part 1: models and terminology
(SP-88). Instrument Society of America (ISA).
Kambhampati, S.; Mali, A. D.; and Srivastava, B. 1998.
Hybrid planning for partially hierarchical domains. In Pro-
ceedings of AAAI-98/IAAI, 882–888.
Klein, I.; Jonsson, P.; and Backstrom, C. 1998. Efficient
planning for a miniature assembly line. Artificial Intelli-
gence in Engineering 13(1):69–81.
Nau, D.; Gupta, S. K.; and Regli, W. C. 1995. AI planning
versus manufacturing-operation planning: A case study. In
IJCAI-95, 1670–1676.
Onder, N., and Pollak, M. E. 1999. Conditional, proba-
bilistic planning: A unifying algorithm and effective search
control mechanisms. In Proceedings of AAAI-99.
Peterson, J. L. 1981. Petri nets theory and the modelling
of systems. Prentice-Hall.
PLANET. 1998. European Network of Excel-
lence in Artificial Intelligence Planning, techni-
cal coordination unit in intelligent manufacturing.
http://odl.education.salford.ac.uk/dan/pims/home.html.
PLANET. 2001. The PLANET roadmap on AI planning
and scheduling. http://www.planet-noe.org.
Pryor, L., and Collins, G. 1996. Planning for contingen-
cies: A decision based approach. Journal of Artificial In-
telligence Research 4:287–339.
S.Viswanathan; C.Johnsson; R.Srinvivasan;
V.Venkatasubramanian; and Arzen, K. 1998. Automating
operating procedure synthesis for batch processes. part
I: Knowledge representation and planning framework.
Computers and Chemical Engineering 22:1673–1685.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending graphplan to handle uncertainty and sensing ac-
tions. In Proceedings of AAAI-98.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI Magazine 15(4).
Yang, Q. 1997. Intelligent Planning. A decomposition and
Abstraction Based Approach. Springer Verlag.

37

