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Abstract

We present a new formulation of Relational Markov Deci-
sion Processes (RMDPs) which is simpler than the situation-
calculus approach of Boutilier, Reiter and Price. In addition,
we describe our initial efforts developing a novel, machine-
learning based method for computing an RMDP’s policy. Our
technique instantiates the RMDP into a number of propo-
sitional MDPs, which are then solved for their value func-
tions. First-order regression techniques are then used to learn
a value function for the complete RMDP. This value func-
tion may then be used to produce a policy for huge decision-
theoretic planning problems, outputting compact solutions
without actually requiring explicit state space enumeration.
Finally, we extend our RMDP formalism to cover the case of
a dynamic universe, i.e. in which action effects may create
new objects or destroy existing ones.

Introduction
Two communities of researchers have looked at planning
problems involving uncertainty. One group (“neo-classical
planning”) has started from algorithms for solving deter-
ministic STRIPS problems, and extended them to handle
disjunctive uncertainty (Peot & Smith 1992; Etzioni et al.
1992; Pryor & Collins 1996; Goldman & Boddy 1994;
Smith & Weld 1998; Weld, Anderson, & Smith 1998;
Cimatti & Roveri 2000; Bertoli & Cimatti 2002) (or less fre-
quently a probabilistic representation (Kushmerick, Hanks,
& Weld 1995; Draper, Hanks, & Weld 1994; Blythe 1998).
Disjunctive uncertainty denotes a qualitative representation
that captures the different possible values for state variables
without using numeric measures of likelihood such as prob-
abilities. This community has typically focussed on generat-
ing a plan from some initial belief state which is guaranteed
to achieve a goal, rather than attempting to maximize ex-
pected utility. Researchers have developed conformant plan-
ning algorithms, which generate straight-line plans in the
case of zero observability, and contingent planners, which
generate branched plans in the case of partial observability.

In contrast, the “UAI community” starts from the premise
that a probabilistic representation is more powerful. Un-
certain actions are represented with a probability distribu-
tion over possible resulting states, and the planning prob-
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lem is formulated as a Markov decision process (MDP) or
partially-observable Markov decision process (POMDP).

There are many clear differences in the approaches
adopted by the two communities, and these complicate com-
parison and combination of the methods each has developed.

• Representation: disjunctive or probabilistic.

• Output: the neoclassists generate straight-line plans or
branching plans, while the UAI community typically gen-
erates a policy — a mapping from states to appropriate
actions.

• Objective: the neoclassists have mostly considered bi-
nary goals which must be achieved (as much as possi-
ble) by the end of the plan. In contrast the UAI commu-
nity usually focuses on the expected discounted reward
achieved by an agent, acting over an infinite timeline,
gaining utility and incurring costs with each action. Al-
though single shot goals can be simulated by infinite hori-
zon reward model by having each sub goal as a state vari-
able, note that each additional sub-goal doubles the size
of the state space making the computation over it slower.

• World Specification: the neoclassists define planning
problems in first-order terms: with a set of objects, their
attributes and relations, and a set of parameterized action
schemata. The UAI community, on the other hand, typi-
cally considers state spaces and transition matrices, or fac-
tors them into dynamic Bayesian networks (DBNs) which
are inherently propositional.

• Problem Measurement: The neoclassists consider both
the length of the plan generated and the complexity of the
problem, which is estimated in terms of the number of ac-
tions or objects present. In contrast, the UAI community
focusses on the size of the state space.

This last distinction is especially important because it has
hindered each community from telling how the other com-
munity’s techniques compared to their own. This gap can
be filled if the two communities adopt a more unified mea-
surement scheme. For example, the noeclassists could re-
port the size of the state space and the UAI community
could mention the complexity of the policy generated. In-
deed, research in each community has resulted in significant
progress. First consider advances which might be said to
stem from the neoclassical camp. First-order representations
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greatly facilitate large problem specification. Domains with
dynamic object creation (Weld 1994) and unbounded infor-
mation gain (Golden, Etzioni, & Weld 1994) have been tack-
led. Algorithmic advances such as planning graphs (Blum
& Furst 1997; Blum & Langford 1998), reachability anal-
ysis, and powerful heuristics have led to huge performance
gains. Boolean decision diagrams (BDDs) (Bryant 1986)
have been used to compactly represent regions of the search
space (Cimatti & Roveri 2000).

On the other hand, the UAI community has power-
ful computational techniques for manipulating probabilities,
e.g. graphical models, dynamic Bayesian networks (DBN),
value iteration, policy iteration and policy search. Fast
linear solvers on factored value functions have also been
tried (Koller & Parr 2000). Using an extension of BDDs,
called ADDs, to compactly represent transition and value
functions has been shown to increase performance (Hoey et
al. 1999). Reachability analysis has also been adapted to
MDPs with some success (Boutilier, Brafman, & Geib 1998;
Feng & Hansen 2002). Both communities have considered
abstraction and approximation techniques.

Overview
Our long-term objective is to better understand the strengths
and weaknesses of the different approaches. Largely we
are motivated by recent progress on probabilistic rela-
tional models (PRMs) (Friedman et al. 1999; Getoor et
al. 2001) and other techniques for combining first-order
representations with probabilistic methods (e.g., Bayesian
logic programs (Kersting & Raedt 2001a; 2001b) and its
precursors (Ng & Subrahmanian 1992; Wellman, Breese,
& Goldman 1992; Haddawy 1994), stochastic logic pro-
grams (Muggleton 1995), RMMs (Anderson, Domingos,
& Weld 2002) and DPRMs (Sanghai, Domingos, & Weld
2003)). Specifically, we wish to extend the work by
Boutilier, Reiter, Price on relational MDPs (Boutilier, Re-
iter, & Price 2001). Their notion of decision theoretic re-
gression is appealing, since it enables policy construction in
time which is completely independent of the size of the state
space. Unfortunately, their methods (while elegant) are too
slow for practice.

In this paper we describe our initial work developing an
alternative method, for solving relational MDPs (RMDPs).
First, instantiate the RMDP into a number of propositional
MDPs, which are then solved for their value functions. Sec-
ond, use machine learning methods (e.g., relational regres-
sion) to learn a value function for the complete RMDP.
Third, use the value function to produce a policy for new
decision-theoretic planning problems, outputting compact
solutions without actually requiring explicit state space enu-
meration. In addition, we extend the RMDP formalism to
cover the case of a dynamic universe, i.e. in which action
effects may create new objects or destroy existing ones.

Road-map
The rest of the paper is organised as follows. In the back-
ground section, we discuss the fundamentals of MDPs, var-
ious techniques to solve them, and the previous work on re-
lational MDPs. In the next two sections, we provide a novel

formulation of relational MDPs, and present our algorithm
to learn the value function for them. In the section on Dy-
namic Object RMDPs, we extend RMDPs to handle actions
whose effects create new objects. We end with our contribu-
tions and future work in the conclusions section.

Background
A Markov Decision Process is a tuple <S,A, T,<>, where

• S is the set of states.

• A is the set of actions.

• T is the transition function A × S × S → [0, 1] which
takes an action, the current state and the next state and
gives the probability of this transition.

• < is the reward model which is a mapping from a state
to a real number. Intuitively, <(s) is the reward the agent
would get when it reaches a particular state s.

We consider MDPs for which the objective is to maximise
the expected discounted reward gathered by the agent act-
ing over infinite time. Thus we also include a γ ∈ [0, 1)
as the discount factor. Since we are in the fully observ-
able case, we need to output a policy π : S → A which
maximises our objective function. Note that such an MDP
satisfies the Bellman backup equation given by V ∗(s) =
<(s) + maxa∈A

{

γ
[
∑

s′∈S T (a, s, s′)V ∗(s′)
]

− cost(a)
}

.
Here cost represents the cost of performing an action and

V ∗(s) is defined as the maximum expected discounted re-
ward accumulated starting from a given state s.

In many cases, it is possible to factor the MDP. In this,
a state is defined in terms of a set of state variables (X =
{X1, X2, . . . Xn}), which are often Boolean. Thus one as-
signment of values to state variables represents one state.
Assuming Boolean state variables, one can see that |S| =
2|X|. In this framework, the transition function for each
action is best described using a DBN and even the reward
model may be described using the state variables.

Considerable work has been done in developing meth-
ods for solving these propositional planning problems un-
der uncertainty, especially assuming full observability. Most
approaches have used dynamic programming of the Bell-
man equation in either the value iteration or policy iteration
framework. Some have used heuristics to reduce the com-
putational requirements. In the case where the states are
non-factored, Bonet and Geffner (Bonet & Geffner 2000)
use heuristic search over the state space. However, in the
propositionally factored case, SPUDD (Hoey et al. 1999)
uses algebraic decision diagrams to do symbolic reason-
ing over the state space. This method proves to be fairly
fast on many reasonable sized problems. Feng and Hansen
(2002) observe that the information of an initial state could
be utilised to speed up the whole procedure. They adapt
SPUDD to add state reachability information by doing alter-
native rounds of dynamic programming and reachable state
space expansion, and achieve much better results. Alter-
natively, Koller and Parr (Guestrin, Koller, & Parr 2001;
Koller & Parr 2000; 1999) factor the value function as lin-
ear combination of small basis functions and then solve the
MDP approximately by doing closed form computations.
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However all this is in the realm of propositional planning
that is defined in terms of ground actions and ground state
variables. But, in real life, objects are divided into various
classes. For example, in the coffee-robot domain there could
be many users and many robots that would behave simi-
larly. In a standard (propositional) MDP, one would have
to specify each ground action and state variable separately.
If we wish to succinctly represent such domains, we would
have to consider classes of objects, and define state variables
and actions over classes (or ordered tuples of classes), and
provide a list of ground objects separately. To expand such
a description into actual propositional planning domain we
would have to parametrise all these state variables and ac-
tions over all possible legal combinations from the list of
objects. In other words, actions and state variables would be
terms in a first order language in which action schemas and
object classes were relations.

This idea, termed as Relational MDPs (RMDPs), was in-
troduced in a seminal paper (Boutilier, Reiter, & Price 2001)
in the context of the situation calculus (we provide a new
and simpler formulation of RMDPs in the following sec-
tion). We know that the size of the regular MDPs blow up as
the number of state variables increase. The standard MDP
solvers can’t even take off in the expanded RMDP problems
with even a small number of domain objects, as the num-
ber of state variables grow with number of domain objects
fairly fast. Thus other ways of solving RMDPs which don’t
directly rely on expanding an RMDP into an MDP were re-
quired. They try to utilise the fact that all objects of the same
class behave similarly so that rather than taking each object
separately we can deal directly with object variables which
could be parametrised appropriately in the actual problem.
They learn the value function and the policy in the symbolic
abstract form independent of the number of domain objects
by partitioning the state space based on certain properties
and assigning a value to each partition. To achieve this, they
use situation calculus and regress the final reward model.
Although their procedure is sound and elegant, they could
not generate a working implementation because of the need
to use first order theorem provers to prune the number of
partitions as they were blowing up very fast. On the whole
their system was fairly slow and they could only show re-
sults of first iteration with one time rewards after some hand
pruning.

Some progress has been made recently in solving such
RMDPs. Guestrin et al. (2003) consider a class-based,
approximate value function and solve it using linear pro-
gramming combined with sampling over worlds. Yoon et
al. (2002) describe a method which instantiates the RMDP
with a small number of objects to create a tractable ground
MDP, which is solved traditionally. They use the solutions as
training data and use a greedy learning algorithm to induce a
policy, represented as a decision list. While their results are
promising and their method resembles our learning mecha-
nisms, their approach has three main limitations. First, it is
limited to binary fluents and actions with a single parame-
ter. And while one could preprocess a domain to transform
it into this form, the expansion would result in blowup that
would seriously hamper their algorithm. Second, their pol-

icy representation has very high bias, and hence there are
many policies which cannot be represented. Third, it seems
questionable to try and learn a policy directly; decades of
research on learning for two person games has shown that
it is better to learn a board-evaluation function than a move
selector. Given the close connections between uncertain ac-
tions and games against nature, it seems likely that value
functions will be easier to learn than policies. We rectify
these problems in the solution we propose.

Relational Markov Decision Process
Let us extend MDPs with full observability to RMDPs with
full observability as follows:

Definition (RMDP): We formalise a relational Markov de-
cision process as a tuple <C,F,A,D, T,<>, where C,F
and A are all sets of relational schemata. In particular,

• C is a set of classes denoting the different possible types
of a ground object.

• F is the set of fluent schemata. Each fluent f ∈ F has
arity α(f) and we assume typed logic i.e. with each fluent
f is associated a function tf : {1, 2, ..., α(f)} → C. This
function represents the types of different arguments for f
to be valid.

• A is a set of action schemata and as with the elements of
F , there is an associated arity and a type function ta for
every a ∈ A. Also the cost of each action is a positive
real number.

• D represents a set of domain objects. With each object
from the set D is associated a single type from C.

• T is a transition function which represents the probabili-
ties of transition between different states (we will discuss
what comprises a state, shortly ).

• Finally < is the reward model. For simplicity, we con-
sider the model as a mapping from the set of states to
real numbers. However, we could handle a more com-
plex model which associates a real value with every tuple
(currentstate, nextstate, action)

Example: Following the example of (Boutilier, Reiter,
& Price 2001) let us consider a domain in which there are
boxes in different cities and the goal is to bring one box into
Paris. There are trucks which help in this transportation.
To determine one state we would have to know whether a
box is in a city (Bin), whether a truck is in a city (Tin) and
whether a box is on a truck (On). The actions are unloading a
box from the truck, loading a box onto the truck and driving
the truck from a city to another. Let us formally define this
RMDP.

• C : {Box, Truck, City}

• F : {Bin(Box,City), On(Box, Truck), Tin(Truck, City)}

• A : {Unload(Box,Truck,City), Load(Box, City, Truck),
Drive(Truck,City,City)}

• < : if ∃b Bin(b, Paris) then 10 else 0.

• Any number of boxes, trucks and cities will give one pos-
sible D.
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• The transition function T is defined in detail in the fol-
lowing text.

We now define the set (FD′) of all possible fluent tuples in-
stantiated with elements of domain D′.

FD′ = {f(d1, d2, . . . dα(f))| f ∈ F, di ∈ D′, tf (i) =
type(di)}.

If we expand the RMDP into a factored MDP then the
state variables in the MDP are elements of FD - the set of
possible tuples comprising the fluent relations formed by in-
stantiating the schemata in F with objects in D. Hence,
the state space S of the problem is ℘(FD), the power set
of FD. We can similarly define the possible actions one
can execute over some set of domain objects D′ as AD′ =
{a(d1, d2, ..., dα(a)}| a ∈ A, di ∈ D′, ta(i) = type(di)}.

The transition function T is in general a mapping from
S ×S ×AD → [0, 1]. Note that the state space is extremely
large and thus specifying a general transition function is im-
practical. An interesting restricted form is a relationally fac-
tored version of the transition function.

Assumption 1: We assume that an action can only affect
relational fluents instantiated over its parameters.

This is a reasonable assumption for many situations since
one can add an arbitrary (finite) number of parameters to an
action. Thus, the assumption is akin to ruling out universally
quantified effects. In such a case, we can achieve a compact
specification of the transition function.

Compact specification of transition function
Let us consider an action a∗ = a(d1, d2, ..., dα(a)) where

a ∈ A and di ∈ D. Define D∗ = ∪
α(a)
i=1 {di}. As assumed,

the action a∗ can affect only di’s, i.e. it affects the fluent
tuples instantiated only by domain objects from D. Hence,
the transition function associated with a∗can be thought as
Ta∗ = ℘(FD∗)× ℘(FD∗)→[0, 1].
We can further reduce the specification in the problems
where one can assume that the value of a relational fluent
in the new state is independently modified by an action ir-
respective of the value of other fluents in the new state i.e.
depends only on the previous state. In such a case Ta∗ =
℘(FD∗)×FD∗→ [0, 1].
Finally if we assume that each action template, a, behaves
similarly with all the similar objects (satisfying same rela-
tional fluents), then for each action we can specify this tran-
sition function as a template and we can instantiate the pa-
rameters with different domain objects to get the exact prob-
ability of a particular transition.

Example (contd): Following the previous example, the
figure 1, shows the transition function in Probabilistic Strips
format (Boutilier, Dean, & Hanks 1999; Hanks & McDer-
mott 1994; Kushmerick, Hanks, & Weld 1995). Note that in
our example, load and unload succeed with probability 0.8
and drive succeeds with probability 0.9. A failure happens
with probabilities 0.2, 0.2 and 0.1 respectively and means
that the state variable in consideration does not change its
previous value. Moreover, all the variables that have not
been mentioned are assumed unchanged. However to take
advantage of the DBN representation (Dean & Kanazawa

Action : Unload(box,truck,city)
Preconditions: Tin(truck,city),

On(box,truck)
Effects: Bin(box,city)∧

¬On(box,truck) p = 0.8
Action : Load(box,city,truck)
Preconditions : Bin(box,city),

Tin(truck,city)
Effects: On(box,truck)∧

¬Bin(box,city) p = 0.8
Action : Drive(truck,city1,city2)
Precondition : Tin(truck,city1)
Effects: Tin(truck,city2)∧

¬Tin(truck,city1) p = 0.9

Figure 1: Transition function for actions in Probabilistic
Strips representation.

1989) we could instead create a relational DBN representa-
tion where the state variables would be these parametrised
relations which would be causes of other relational state
variables. But recall that in standard DBN representations
one must explicitly represent the causal relationship of each
new state variable. However, in our case, doing this would
greatly increase the size of the representation. So we adopt
a DBN representation with an implicit persistence property
which means that all the new variables that have not been
mentioned remain unchanged. The transition function of
Unload(box, truck, city) as an example of this relational
DBN with persistence is shown in figure 2.

As we consider full observability in our model, we as-
sume that after each action execution the agent knows the
new state achieved. To us, that means that after executing
action a∗, the agent knows the value of each fluent from the
set FD∗ .

The solution of such an RMDP is similar to that
of the MDP i.e. to find a policy (π : S → AD)
which maximises the expected discounted reward over
an infinite horizon. We see that the Bellman backup
equations can be inherited from the MDP. The opti-
mal value function V ∗is defined as: V ∗(s) = <(s) +
maxa∈AD

{

γ
[
∑

s′∈S Ta(s, s′)V ∗(s′)
]

− cost(a)
}

Solving RMDPs by learning the value function
In this section, we describe our approach to learn the first or-
der value function for the RMDPs. Notice that it is straight-
forward to use this value function to generate the policy.

Assumption 2: We assume that the RMDP reward model
is a piecewise constant function which defines a partition
over state space such that each equivalence class has the
same value. We also assume that each equivalence class
can be defined as a quantified first order logic expression.

That is we will not handle rewards which are, for exam-
ple, proportional to the number of objects satisfying certain
constraints. Where (Boutilier, Reiter, & Price 2001) used
deductive reasoning in generating the first order value func-
tion, we use inductive learning techniques to do the same.
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Tin(truck,city)

On(box,truck)

Bin’(box,city)

On’(box,truck)

Bin(box,city)

Tin      On       Bin          Bin’

F        F           F             0
F        F           T             1
F        T           F             0

Tin      On       Bin’       On’

F         F           X         0
F         T           X         1
T         F           X         0
T         T           T         0          
T         T           F         1

T        F           F             0
T        F           T             1
T        T           F             0.8

Figure 2: Relational DBN representation of transition func-
tion of Unload(box,truck,city). Note that all unmentioned
terms (eg. Tin’(truck,city) ) will remain unchanged. Note
that both Bin(box,city) and On(box, truck) can’t be true at
the same time.

1. We first expand the RMDPs with an extremely small num-
ber of objects into a ground MDP.

2. We then use a state of the art MDP solver to compute the
value function of this small MDP.

3. We repeat the above two steps to generate a suitable num-
ber of training examples.

4. We now apply learning techniques using this data to gen-
erate a value function in the symbolic form. Specifically,
we use a learner which generates first order regression
trees (decision trees with internal nodes having quantified
logic expressions and leaves as numeric values).

An example of such a value function is shown in Figure 3.
This figure can be read as follows. If there is a box in Paris
the value is 10, else if there is a box on some truck and that
truck is in Paris then value is 7. If that truck is elsewhere
then the value is 5 and so on.

Since we wish to learn a real-valued value function, we
require a learning technique which ascribes numeric values
(rather than a symbolic classifications) to a partition of the
state space. A variant of inductive logic programming called
structural regression trees (SRT) (Kramer 1996) is tailor-
made for our purposes. SRT builds a sequence of increas-
ingly complex trees (by gradually decreasing the minimum
coverage parameter) and then chooses the best according to
a minimum description length (MDL) heuristic (Rissanen
1978).

Each regression tree is grown in a manner similar to the
top-down induction of a decision tree. A partition is split by
considering conjunctions of literals and choosing the con-
junction whose split most lowers the sum of squared differ-
ences (equation 1). For example, a set of instances I might
be split by a conjunction Γ into a set, I1 that satisfies Γ and a

E

bBin(b,Paris)

E

b tOn(b,t)

E

Tin(t,Paris)

E

cTin(t,c)

...

10

7

5 ...

Figure 3: A value function represented as a first order re-
gression tree. The leaf nodes are the values of the partitions.
Note that all the left branches are true branches.

set, I2 that does not. If yi denotes the mean of the elements
(yi,j) of Ii, then the sum of squared differences is:

2
∑

i=1

|Ii|
∑

j=1

(yi,j − yi)
2 (1)

When the stopping criterion terminates tree growth, the
tree may be used to predict the value for an arbitrary state
by applying the tests at each node in turn until a leaf, I1, is
reached. The value assigned to the state is simply the mean
value of the leaf: yi.

The major concerns in this approach are whether the as-
sumption 2 is a good bias for learning; will the learner con-
verge and is our method scalable. Although we don’t have
direct answers to these questions, our initial efforts with
hand-implementation suggest that the learner will converge.

Implementation status
We tested the algorithm by hand-executing several iterations
on a small number of examples, and the results seem ex-
tremely positive. This has led us to start with the implemen-
tation of the system. We use SPUDD (Hoey et al. 1999) as
the MDP solver. We are currently modifying C4.5 (Quinlan
1993), a decision tree learner (which is written in C) to learn
first order regression trees in the same fashion as SRT.

Dynamic Object Relational Markov Decision
Process

Consider a factory domain, where lots of widgets are be-
ing continually produced by various mills. Periodically, we
need to pack and ship them appropriately. We can think of a
produce action that creates a new widget and a ship action
that takes some already produced widgets out of the system.
In order to model such a domain, we need to formalise ac-
tion effects that change the set of objects D.

Note that such a system can’t be modelled by traditional
MDPs as the number of domain objects, and hence the num-
ber of states is unbounded. Even if there were a bound and
one added a new attribute alive which told whether an ob-
ject is still in system or not, this would create the problem
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of having a large number of objects in the working set from
the very beginning and since the size of the planning prob-
lem grows unbelievably large with the number of domain
objects, it would be very slow. In this section we propose
dynamic object relational MDPs (DORMDPs) as a model
that caters to dynamic creation of an unbounded number of
objects.

There are different possibilities for the dynamic universes
in terms of the number of objects that could be created as a
result of an action execution:

• Unbounded Object Creation: The most generic model
would allow for an unbounded, variable number of new
objects being created as a result of an action.

• Bounded Object Creation: An action producing vari-
able number of objects subject to a maximum value.

• Constant Object Creation: An action producing only
constant number of new objects.

• Single Object Creation: At most one new object being
created per action execution.

For simplicity of presentation, we consider the last case in
some detail. Note that, the following model can be easily
extended to deal with any of above listed cases. For exam-
ple, to model the first two cases, we could take the number
of objects created as a probability distribution based on the
current state.

Definition (DORMDP): A DORMDP is a tuple
<C,F,A,D, T,<> whose elements are the same as
those of an RMDP except that D is infinite.

The state space S is ℘(FD) but since D is infinite, the
set of relational fluents defined over D is also infinite, hence
S is infinite. In particular, D is D0∪[∪|C|

i=1{di1, di2, ...}]
where D0 is the initial set of objects. We can shrink D by
having the dij’s only for those types (ci) for which some ac-
tion creates an object of that type. Moreover, we also define
two new functions over each action pc: A×S → [0, 1] which
denotes the probability that action A produces a new object
in the state S and tc : A → C which denotes the class of the
object created.

We maintain Assumption 1, in which we assume that rela-
tional fluents are independent and that an action affects only
fluents instantiated by action parameters and the new object
created. In this case, the transition function can be defined
as follows:

Let the action being considered be a∗=
a(d1, d2, ..., dα(a)) such that a∗ ∈ AD and a ∈ A. Let D∗

be ∪
α(a)
i=1 {di}. Moreover, let D′=D∗ ∪ {dnew} where dnew

is the new object created such that type(dnew) = tc(a).
Also, note there would be new relational fluents created (as
a result of object creation) whose truth values need to be
found out. The total set of relational fluents affected would
be FD′ . Then our transition function for the action a∗ is
Ta∗ : ℘(FD∗)×FD′ → [0, 1].

Finally the observation model for full observability re-
quires the agent to observe whether the new object was cre-
ated or not and also the truth values of all the relational flu-
ents from the set FD′ , if new object was created and FD∗ ,

if it was not created. The definitions of policy and reward
model etc. can be inherited from the RMDP definition. And
as usual, the goal of such a planning problem is to find an
optimal policy (S → AD) such that discounted sum of ex-
pected rewards is maximised over an infinite horizon.

We know that DORMDPs can’t be expanded into propo-
sitional MDPs directly since the state space is infinite. So,
the only way to generate a value function, in this case, seems
to be generating a first order one, partitioning the state space
based on attributes of the states. Several methods may work:

• Adapt the symbolic regression approach in (Boutilier, Re-
iter, & Price 2001). The trick in this case would be devel-
oping efficient theorem proving techniques to simplify the
partition boundaries.

• Use the heuristic search approach (Bonet & Geffner 2000)
as follows: We incrementally expand DORMDP into a
fraction of the unbounded MDP. We can then use Real
Time Dynamic Programming (RTDP) (Barto, Bradtke, &
Singh 1995) from the initial state to update the value func-
tion using Bellman’s Equation only for the visited states
until the goal is achieved. Several iterations of RTDP
may give a suitable approximation to the value function
of reachable states. We can then learn a first order value
function based on our regression tree learning approach.

• Use reachability analysis with SPUDD for a dynamically
expanding MDP (Feng & Hansen 2002). However, this
approach explores the complete optimal reachable state
space which can be potentially infinite. So the key here
would be development of loop detection to stop the pro-
cess. Perhaps, the techniques of (Smith & Peot 1996;
Smith 1989) could be adopted.

Note that this work is still ongoing.

Conclusions
Important work has been done by neoclassical and UAI re-
searchers in the field of planning under uncertainty. In this
paper, we have combined the contributions of both commu-
nities. Specifically, our representation, output format and
objective are similar to those of the UAI community and
our schematised world view and dynamic object creation are
neoclassist. While our work is ongoing, we have already
made the following contributions:

1. We defined Relational MDPs. Although (Boutilier, Re-
iter, & Price 2001) has already done this in the context of
situation calculus, we believe that our formalism is more
practical.1

2. We presented a new solution method based on relational
decision tree learning from the solution of expanded
propositional MDPs.

3. We defined Dynamic Object Relational MDPs which al-
low one to model actions whose effects created objects.

1Although several planners may have used representations like
ours, no one except Boutilier et al (2001), to our knowledge, has
provided a formal definition of an RMDP or its equivalent.
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In future, we will complete the implementation of our sys-
tem and do experiments over it; these will answer our con-
cerns on the convergence and scalability of the system. Fur-
ther, we wish to relax the two assumptions we have made in
the paper. For instance, we could deal with reward models
which have rewards proportional to number of objects of a
certain type and handle universally quantified effects. We
could use First Order Regression System (FORS) (Karalic
& Bratko 1997) since it has the ability to learn regression
models over attributes. We can further incorporate the neo-
classical objective of trying to achieve goals in our frame-
work, instead of maximising rewards. We also wish to look
for improved reachability analysis and better heuristics to
speed up the system. Another direction of research is in-
cluding temporal duration in uncertain actions. We will also
continue to work on solving dynamic object RMDPs.
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