
Heuristic Guidance Measures for Conformant Planning

Daniel Bryce & Subbarao Kambhampati
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

{dan.bryce,rao}@asu.edu

Abstract

Scaling conformant planning is a problem that has received
much attention of late. Many planners solve the problem as a
search in the space of belief states, and some heuristic guid-
ance techniques have been developed to estimate the distance
between belief states. We claim that heuristic techniques in
the past involved an ad-hoc combination of classical plan-
ning heuristics and cardinality measures. We discuss how
to combine them systematically, with the help of planning
graphs, such that the measures reflect the reachability of rele-
vant states within belief states. To demonstrate these ideas we
show how distances between belief states can be estimated by
a set of reachability heuristics within a conformant regression
planner named CAltAlt.

Introduction
Ever since CGP [Smith and Weld, 1998] a series of planners
have been developed for tackling conformant planning prob-
lems – including GPT [Bonet and Geffner, 2000], C-Plan
[Castellini et al., 2001], PKSPlan [Bacchus, 2002], Frag-
Plan [Kurien et al., 2002], HSCP [Bertoli et al., 2001], and
KACMBP [Bertoli and Cimatti, 2002]. Some of these plan-
ners are extensions of heuristic state search planners, yet de-
spite their success there is as yet little understanding on what
the basis for heuristics should be.

Given the different search strategies used by the planners,
it was hard to analyze the impact of various heuristics apart
from the planning substrate that is used. Of the different
strategies, only GPT and KACMBP use non-trivial reacha-
bility heuristics, however the former uses an explicit repre-
sentation, and the latter uses a factored representation with
BDDs. GPT has even been outperformed by HSCP (a pre-
cursor to KACMBP that relies only on belief state cardinal-
ity for guidance). This says little of the merit of the heuris-
tics of the two approaches because while HSCP’s search en-
gine, based on binary decision diagrams, is quite sophisti-
cated, its heuristics are quite primitive. KACMBP improves
upon HSCP by combining an adjusted cardinality heuristic
with a reachability heuristic. The forward chaining planner
uses a reachability heuristic similar to FF [Hoffmann and
Nebel, 2001], in that it takes a relaxed projection from the
current belief state to the goal and sums over the costs of
literals in the current belief state to estimate the maximum
distance between any state in the current belief state and
the goal state. The adjusted cardinality and reachability are
combined by a weighted sum to get a heuristic value. Still,

comparisons of the heuristic effectiveness of KACMBP can-
not be decoupled from the effectiveness of the search sub-
strate.

Thus, we will discuss the effectiveness of the heuristic
techniques in a decoupled fashion to explore what measures
may be beneficial for any substrate. We argue that the previ-
ous idea of using the maximum distance between any pair of
states in the belief states in the distance computation is not
the best means to assign heuristic values to a search belief
state, nor does cardinality have a real meaning when costing
distance. The reason that the maximum distance is used by
forward-chaining planners like KACMBP and GPT is that
there is a single set of goal state literals and each of the states
in the current belief state must be able to reach the goals,
otherwise the distance for the current belief state is infinite.
However, when there are multiple sets of goal state literals,
then a maximum of all distances doesn’t make sense because
all of the states in the current belief state must reach a goal
state, not all goal states. Also, cardinality has been seen as
an effective heuristic for guiding search by leveraging the
knowledge that there are multiple initial states and a single
set of goal state literals. However, as search progresses or
regresses, there can be an arbitrary number of states in any
belief state. Cardinality just happens to work well when the
domain is structured such that there is a monotonic increase
or decrease in the size of a belief states during search. In
other words, each action that is used in a conformant plan
will either increase (in regression) or decrease (in progres-
sion) the size of the current belief state, and all other actions
either decrease (in regression), increase (in progression), or
maintain the size of the belief state. This occurs in many
of the domains in conformant planning literature like BiT ,
Cube, and Ring. Cardinality can lead the search astray in
the BiT domain, for instance, if there were many packages
but in the initial state we specify that the bomb is in one of a
subset of the packages. In regression, there will still be ap-
plicable actions for dunking each of the packages (possibly
containing a bomb or not). Cardinality will direct the search
to arbitrarily select dunk actions that may or may not be for
packages that are relevant to the problem because regressing
each action will increase the cardinality of a belief state.

Given these observations, our intent is to:

1. Describe, in general, what heuristic estimates for confor-
mant planning should be measuring

2. Show how such heuristics can be computed with planning
graphs

18

3. Provide empirical comparisons of the computation ap-
proaches.

To facilitate this discussion, we describe and evaluate the
heuristics within a conformant planner called CAltAlt.

CAltAlt does regression search in the space of “clausal
states” (which are conjunctive representations for sets of
states). The challenges in developing planning graph based
heuristics for CAltAlt include: (i) handling the reachability
cost of sets of states represented as clauses and (ii) handling
uncertainty in the initial state by basing heuristics on mul-
tiple (rather than a single) planning graphs. Our empirical
studies show that planning graph based heuristics provide
accurate guidance compared to cardinality heuristics as well
as the reachability heuristic used by GPT, and are competi-
tive with forward space combination heuristics used within
KACMBP.

We present our work by first explaining the state and ac-
tion representation used within CAltAlt, then discuss ap-
propriate heuristic measures for conformant planning, fol-
lowed by the set of heuristics used within CAltAlt for search
control, followed by empirical evaluation, related work, and
concluding remarks.

State and Action Representation

State Representation: As discussed in [Bonet and Geffner,
2000], conformant planning can be seen as a search in the
space of belief states.

A belief state BSi is a set of multiple world states
{S1, ..., Sj , ..., Sn}.

We choose clausal states as a factored representation, in
CNF, of belief states.

A clausal state CSi, logically equivalent to BSi, is a
set of clauses {C1, ..., Cl, ..., Cm} where each Cl is a dis-
junction of a set of literals {c1, ..., ch, ..., cp}. A conjunctive
clausal state CS′

i is a set of unit clauses, when | BSi |= 1.
CS′

i also refers to a state Sj with a conjunctive set of literals
{c1, ..., ch, ..., cp}.

Using the BiTC1 problem as a running example for this
paper, the clausal state representation of BiTC’s initial state
is:

CSI = [arm,¬clog, (inP1∨ inP2), (¬inP1∨¬inP2)]
A clausal state CSi is said to be satisfied by another

clausal state CSi′ if every clause Cl in CSi is satisfied by
CSi′ . More specifically, CSi is satisfied by CSi′ if

∀Cl∈CSi
∃Cl′∈CSi′

s.t. Cl′ ⊆ Cl.
For example, if CSI = [(inP1 ∨ inP2), (¬inP1 ∨

¬inP2)], and CSi = [(¬clog ∨ inP1 ∨ inP2)], then CSi

is satisfied by CSI .
A clausal state CSi is said to be inconsistent with another

state CSi′ , if there is a clause Cl ∈ CSi s.t. ¬Cl is satisfied
by CSi′ .

For example, if CSI = [¬arm,¬clog, (inP1 ∨
inP2), (¬inP1∨¬inP2)], and CSi = [clog, arm, (inP1∨

1Bomb in the Toilet with Clogging.For the uninitiated, here are
the arcana of the Bomb in the Toilet family of problems: Bomb in
the Toilet (BiT)–the problem includes two packages, one of which
contains a bomb, and a toilet. The goal is to disarm the bomb and
the only allowable actions are dunking a package in the toilet. The
variation “bomb in the toilet with clogging” or BiTC says that the
toilet will clog unless it is “flushed” after each “dunking” action.

CS7

CSG

CS1 CS2

CS3 CS4

CS5 CS6 CS8

DunkP1 DunkP2

DunkP1 DunkP1DunkP2 DunkP2

Flush F lush

Figure 1: Regression path for BiTC example.

inP2)], then CSi is inconsistent with CSI because the
negation of arm in CSi is satisfied by ¬arm in CSI .

The set of constituents ξ(CSi) of a clausal state is
all minimal conjunctive clausal states Sj that satisfy
CSi. ξ(CSi) is equivalent to a DNF representation
of a clausal state’s CNF representation. For exam-
ple, BiTC’s initial state CSI = [arm,¬clog, (inP1 ∨
inP2), (¬inP1∨¬inP2)]; the set of constituents ξ(CSI) =
{[arm,¬clog, inP1,¬inP2], [arm,¬clog, inP2,¬inP1]}.

Since we’re dealing with partial regression states,
ξ(CSi) may not represent all states in a belief state
BSi, so we define ξ̂(CSi) as the complete set of
states represented by BSi. For example, if BiTC’s
initial state were partial CSI = [arm, (inP1 ∨
inP2), (¬inP1 ∨ ¬inP2)]; the set of constituents
ξ(CSI) = {[arm, inP1,¬inP2], [arm, inP2,¬inP1]},
but ξ̂(CSI) = {[arm, clog, inP1,¬inP2],
[arm,¬clog, inP2,¬inP1], [arm, clog, inP1,¬inP2],
[arm,¬clog, inP2,¬inP1]}.

Action Representation: An action ag , of the action set
A = {a1, ..., ag, ..., aq}, is described in terms of (1) an ex-
ecutability precondition ρe, and (2) several conditional ef-
fects of the form (ϕf : ρf → εf), where ρf and εf are,
in general, clausal states2. The executability precondition
ρe (a clausal state) of the action must hold for the action
to be executable. Each conditional effect is of the form
[antecedent (precondition ρf) → consequent (effect εf)].
The antecedent or consequent of the individual effects can
be empty. In the first case, the corresponding effects occur
in all worlds; and in the second case, the action has a defined
outcome in any state. The conditional effects ϕf make up a
set Φag

= {ϕ1, ..., ϕf , ..., ϕr}.
As an example, the actions for BiTC are expressed as:

aDunkP1 : {ρe : ¬clog, ρ1 : inP1 → ε1 : ¬arm, ε2 :
clog}
aDunkP2 : {ρe : ¬clog, ρ1 : inP2 → ε1 : ¬arm, ε2 :
clog}
aFlush : {ε1 : ¬clog}

Regression: Conformant planning by regression is just a
search in the space of clausal states, starting with the goal

2εf is a conjunctive clausal state because we are only consider-
ing deterministic actions.

19

state and regressing it non-deterministically over all relevant
actions. Clausal states are regressed until finding a clausal
state that is satisfied by the initial state. The main difference
between regression search in conformant and classical plan-
ning is that because of disjunction in the initial state a con-
formant planner cannot split the disjunction in a regressed
state3 into the search space – and thus has to handle disjunc-
tive clausal states directly. Regression is preferable to pro-
gression because of the increased branching that is possible
when there are multiple initial states.

Following [Pednault, 1987], regressing a clausal state
CSi over an action ag involves taking the union of causa-
tion and preservation clauses of each Cl ∈ CSi w.r.t. each
effect ϕf of ag . Formally, the result CSi′ of regressing the
clausal state CSi over the action ag is defined as:
CSi′ = Regress(CSi, ag) = ∀Cl∈CSi

∀ϕf∈Φag
ρe ∪

Σ
ϕf
ag (Cl) ∪ Π

ϕf
ag (Cl)

Executability clause (ρe) is the executability precondition
of ag . This is what must hold in CSi′ for ag to have been
applicable.

Causation clause for a clause Cl w.r.t an effect ϕf : ρf →
εf of an action ag (denoted by Σ

ϕf
ag (Cl)) is defined as the

weakest clause that must hold in the state before ag such
that ϕf causes Cl. Formally Σ

ϕf
ag (Cl) is defined as:

{Cl ∨ ρf | ϕf : ρf → εf ∈ Φag
and εf satisfies Cl}.

Preservation clause of a clause Cl w.r.t. an effect ϕf :
ρf → εf of action ag (denoted by Π

ϕf
ag (Cl)) is defined as

the weakest clause that must be true before ag such that Cl

is not violated by the effect εf of ϕf . Formally Π
ϕf
ag (Cl) is

defined:
{¬ρf | ϕf : ρf → εf ∈ Φag

and εf satisfies ¬Cl}.

Example of Regression and Search: Since clausal state re-
gression is not commonly discussed in planning literature,
we will now give a complete example of clausal state re-
gression search within BiTC. The search states are shown
schematically in Figure 1. We start with initial and goal
clausal states:
CSI = [arm,¬clog, (inP1 ∨ inP2), (¬inP1 ∨ ¬inP2)]
CSG = [¬arm]

aDunkP1 and aDunkP2 are applicable for regression at
CSG because they both have ¬arm as a conditional ef-
fect consequent. The regressed states CS1 and CS2 are
constructed from the causation clause and the executability
clause for the respective actions.
CS1 = Regress(CSG, aDunkP1) = [¬clog, (inP1 ∨
¬arm)]
CS2 = Regress(CSG, aDunkP2) = [¬clog, (inP2 ∨
¬arm)]

Notice that in classical planning, we would have said
here that Regress(CSG, aDunkP1) = [¬clog, inP1] since
¬arm is directly given by aDunkP1. However, the weak-
est preconditions for ¬arm to be true after aDunkP1 is
(inP1 ∨ ¬arm) rather than just ¬arm.

aFlush is applicable to both CS1 and CS2 because it has
¬clog as an effect. The regressed states CS3 and CS4 are

3To see this, consider that we have a goal p ∨ q. Splitting the
disjuncts into the search space treats the goal as p ∧ q, which will
not be satisfied if the initial state has p ∨ q.

constructed based on the executability clause, but the pre-
condition is always true, so the only change is the removal
of ¬clog.
CS3 = CS4 = Regress(CS1, aFlush) = [(inP1 ∨
¬arm)]

Finally, both Dunk actions are applicable again for the
same reason as the generation of CS1 and CS2. Choosing
the unchosen Dunk action, given the search path, will lead
to a state with new information. After regressing all appli-
cable Dunk actions, we get CS5, CS6, CS7, and CS8.
CS5 = CS7 = Regress(CS3, aDunkP2) =
[¬clog, (inP1 ∨ inP2 ∨ ¬arm)]
CS6 = Regress(CS3, aDunkP1) = [¬clog, (inP1 ∨
¬arm)]
CS8 = Regress(CS4, aDunkP2) = [¬clog, (inP2 ∨
¬arm)]

CS5 and CS7 are both satisfied by CSI because every
clause in the clausal states is satisfied by a clause in the ini-
tial state, so either is a terminal search node, and the path of
actions leading to it is a conformant plan.

Belief State Distance Estimation
We will start by discussing what measures are worth estimat-
ing for providing heuristic guidance for conformant plan-
ning. Consider the example in Figure 2; there are two be-
lief states BS1 and BS2 that we are trying to assign heuris-
tic measures for the difficulty of reaching the initial belief
state BSI . We would like to estimate D1 and D2, the actual
lengths of conformant plans from BSI to BS1 and BS2, re-
spectively. The arcs on BS2 labeled χ1 and χ2 are showing
how state distance measures are combined.

There are several factors to consider and leverage in mak-
ing this estimation of D1 and D2:

1: ξ̂(BSi), the set of states in the belief state.

2: Reachability measures between pairs of individual states,
dij−k, where each pair is a state Sk from BSI and Sj from
BSi, as well as χ1 and χ2, the combination techniques for
the distances of individual states to obtain di, a distance es-
timate to Di.

3: The overlap of independent plans that reach the relevant
states of BSi from states in BSI .

The cardinality of a belief state may be used as a cheap
heuristic that assumes that a larger belief state has more
probability of containing the states in the initial belief state.
However, this can be misleading because even though a be-
lief state is large, we may not be able to extend it to include
the initial states, during regression.

The reachability measures of pairs of states (dij−k) or
pairs of belief states and states (di−k) also reflect how diffi-
cult a conformant plan will be to construct. These dij−k and
di−k measures can be handled as either numbers estimating
the plan length or sets of actions estimating a plan. Also im-
portant is how to combine the dij−k and di−k measures to
ultimately get the estimate di. We define two combinations:
χ1, which uses the dij−k’s or estimates directly to get the
di−k measures, and χ2, which combines the di−k measures
or estimates directly to get di. The applicable operations al-
lowable in χ1 and χ2 for numerical estimates are minimum,
maximum, and average; and for estimated sets of actions we
can take the minimum cardinality set, maximum cardinality

20

h(BS1) = d1

h(BS2) = d2

I1 : d11−1

I3 : d11−3

I2 : d11−2

I2 : d12−2

I3 : d12−3

I1 : d13−1

I2 : d13−2

I3 : d13−3

I1 : d14−1

I2 : d14−2

I3 : d14−3

I1 : d21−1

I2 : d21−2

I3 : d21−3

I1 : d12−1

I1 : d2−1

I2 : d2−2

I3 : d2−3

I1 : d1−1

I2 : d1−2

I3 : d1−3

di : distance from BSi to BSI

di−k: distance from BSi to state k

k - state in BSI

i - belief state
j - state in BSi

I3

I2

I1

D2

D1

I1 : d22−1

I2 : d22−2

I3 : d22−3

BS2

BS1

dij−k: distance from state k to j

X2

X1: Combination of dij−k values

X2: Combination of di−k values

to compute di−k value

to compute di value

Di: # of conformant actions
from BI to Bi

BSI

S2

S1

S3

S4

S2

X1

X1

X1

S1

Figure 2: Example of Conformant Plan Distance Estimation in Belief Space

set, or the union of sets. Note, sets of actions can be turned
into numerical estimates by taking the cardinalities of the
sets; this necessarily happens before we get a final number
for di.

Furthermore, of the reachability measures for Sj ∈

ξ̂(BSi) there can be much redundancy because the same ac-
tions may be used in many of the individual plans that map
the initial states BSI into ξ(BSi), hence have high overlap.
As we will show, keeping sets of actions instead of numeri-
cal estimates for the d measures can allow us to reason about
overlap.

For example, in Figure 2, only using | ξ̂(BSi) | to es-
timate di will tell us that BS1 is a better choice because
there are four states in it, opposed to two in BS2. This
may not be the best choice because it could be the case that
∀j,kd1j−k = ∞.

Alternatively, abandoning cardinality and using a heuris-
tic similar to GPT, we’d set both χ1 and χ2 to take a max in
order to find the maxj,k dij−k to for the estimate di. How-
ever, this is problematic for the same reason as | ξ̂(BSi) |
because maybe ∃j,kd1j−k = ∞. Then we’d eliminate BS1

from consideration by assigning d1 a cost of ∞, even though
the other states in BS1 may all have very low distances to
BSI , with respect to the distances of states in BS2.

This brings up an important point for considering how to
define χ1 and χ2 for costing a belief state. We would pre-
fer χ1 to be a minimization because a state Sj ∈ BSi may
not even be relevant to achieving the state Sk ∈ BSI and
taking the max would give di−k = ∞. The minimization
is important because we need only one state Sj ∈ BSi to
have a finite distance for each Sk ∈ BSI . However, for

χ2 it is important to take a maximization because the dis-
tance from BSi to BSI is at least the largest distance from
the minimum-cost relevant states of BSi, and if for any state
Sk ∈ BSI that the distance di−k = ∞ then di = ∞ because
that initial state Sk is unreachable, from BSi.

Another approach, that of KACMBP [Bertoli and Cimatti,
2002], is to consider a heuristic that combines reachability
with relevance-based cardinality (or as they call truth per-
centage) for forward chaining search. The reachability mea-
sure is taken, similar to GPT, as a maxj,k dij−k, but as a sum
over the costs of goal literals in a projection from Bi to get
di.

The lesson to be learned is that in regression not all of the
states Sj ∈ BSi need to be costed with respect to each of
the initial states, only the min-cost Sj for each Sk ∈ BSI .
Whereas, in progression, if there is a single goal state, then
each of the states in the current belief state must have fi-
nite distance to the goal to be useful. However, the same
argument for regression holds in progression when there are
multiple goal states; we only care that each of the states in
the current belief state has finite distance to one of the goal
states. So we would like to take the max of the distances
from the min-cost states to one of the goal states because
some of the states in the current state may not be able to
reach all of the goal states.

Heuristics
This section provides three sets of heuristics that estimate
these distance computations.

All of the heuristics used in CAltAlt are within the con-
text of greedy best first search (cf. [Bonet and Geffner,

21

1999]), where the reachability cost of a clausal state is
f(CSi) = g(CSi) + w ∗ h(CSi). The g(CSi) term is
the number of actions regressed from the goal state to reach
CSi, w is the weight term, and h(CSi) is the heuristic es-
timate of how many actions are needed to reach the initial
state from CSi. The search is guided by expanding the
clausal states with the lowest cost f(CSi).

For the remainder of this section, to illustrate the com-
putation of each heuristic, we use an example from BiTC
called CBiTC,4 where a courteous package dunker has to
disarm the bomb and leave the toilet unclogged. This prob-
lem is used because the goal state has two conjuncts, allow-
ing better illustration of heuristic computation that combines
the costs of individual subgoals. The initial clausal state is
CSI = [arm,¬clog, (inP1 ∨ inP2), (¬inP1 ∨ ¬inP2)],
and the goal is CSG = [¬clog,¬arm]. The optimal action
sequences to reach G from I is: {DunkP1 → Flush →
DunkP2 → Flush}, or {DunkP2 → Flush →
DunkP1 → Flush}, thus the optimal heuristic estimate is
h∗(CSG) = 4 because in either plan there are four actions.

Cardinality
The idea behind cardinality is to count the number of states
that are represented by a belief state. This can be useful in
regression because the more states that are in a belief state
the better chance that the initial states are in the belief state.
The means by which we make this measure is to take a belief
state and find its set of constituents, ξ(CSi), to approximate
ξ̂(CSi) and count them. Formally,

hcard(CSi) =| ξ(CSi) |.
For instance in CBiTC, hcard(CSG) = 1.

Single planning graph heuristics
The base approach for using planning graphs for con-
formant planning heuristics is to just take all the lit-
erals in the initial state clauses and insert each literal
into the initial layer of the planning graph, ignoring in-
teractions between possible worlds. Thus, for CBiTC,
the initial level of the planning graph is expressed as
CSI = [arm,¬clog, inP1, inP2,¬inP1,¬inP2], ignor-
ing the “xor” connective between inP1 and inP2. Once the
planning graph is computed, the level l(ch) at which a par-
ticular literal appears in the planning graph is later used at its
cost. Notice, χ2 = � because there is only one di−k value
estimated by a single planning graph.

The most simple conformant planning heuristic to com-
pute on a planning graph is

hmax(CSi) = max
Cl∈CSi

cost(Cl), where

cost(Cl) = minch∈Cl
(l(ch)).

Here we use χ1 = estimate, and χ2 = � when construct-
ing the cheapest set of literals and taking the max cost literal.
This is approximate to GPT’s heuristic because it takes the
max distance to reach a literal of the goal state, which is an
underestimate of the most distant state. Another heuristic is:

hsum(CSi) =
∑

Cl∈CSi

cost(Cl)

which sums costs of the literals of the closest estimated
state in the belief state. It uses χ1 = estimate, and χ2 = �.

4Courteous BiTC.

Other heuristics considering mutex information can be com-
puted on a single graph, and we have investigated several of
them. They are not discussed here for lack of space.

The main disadvantages of single planning graph heuris-
tics is that they make it hard to reason about the overlap of
independent plans from the initial states, and make it diffi-
cult to identify consistent states because the graph is built
from an inconsistent union of literals.

Multiple planning graph heuristics
Single graph heuristics are mostly uninformed because the
initial belief state corresponds to multiple possible states.
The lack of accuracy is because single graphs are often not
able to capture propagation of world specific support infor-
mation. Consider, in BiTC, if DunkP1 was the only ac-
tion, then DunkP1 has nothing to be mutex with. We could
say that ¬arm is reachable in level 1, but in fact the cost of
¬arm is infinite (since there is no DunkP2 to fully support
¬arm), and there is no conformant plan5.

To account for this and sharpen the heuristic estimate by
accounting for support across all possible worlds, multiple
planning graphs Γ are considered. Given the initial clausal
state CSI , we grow a planning graph γk ∈ Γ for each con-
junctive initial state Sk ∈ ξ(CSI). With multiple graphs, the
achievability cost of a clausal state is computed in terms of
its achievability in all the constituent graphs. In general we
only build the minimal independent set of graphs for CSI

because ξ(CSI) is the set of minimally satisfying states.
Hence, one disjunct is chosen from each clause to construct
a graph, thus the independent set of graphs. We now can es-
timate many di−k measures and need χ2 to combine them.

For example in BiTC, there would be two graphs built
(Figure 3). They would have the respective conjunctive ini-
tial levels:

SI1
: [arm,¬clog, inP1,¬inP2]

SI2
: [arm,¬clog,¬inP2, inP2]

In the graph for the first world, SI1
, ¬arm comes in only

through DunkP1 at level 1. In the graph for the second
world, SI2

, ¬arm comes in only through DunkP2 at level
1. Thus, the multiple graphs show which actions in the dif-
ferent worlds contribute to the same fact’s support.

There are several ways to compute the achievability cost
of a clausal state with multiple graphs, as follows:

Sum-max (hsummax
): The easiest heuristic to compute with

multiple planning graphs is hsummax
. The hsummax

(CSi)
computes the sum of the cost of the clauses in CSi for each
graph γk ∈ Γ and takes the maximum. Formally:

hsummax
(CSi) = maxγk∈Γ

(

hsumγk
(CSi)

)

Here we use χ1 = estimate, and χ2 = maximum.
hsummax

considers the minimum cost, relevant literals of
a belief state (those that are reachable given an initial state
for each graph γk) to get di−k measures. The max is taken
because the estimate accounts for the worst (i.e., the plan
needed in the most difficult world to achieve the subgoals)6.

5If any of the planning graphs does not “reach” all of the goals,
then this is an indication that a conformant plan does not exist (as
would be the case with only the DunkP1 action in BiTC2).

6This closely resembles the reachability heuristic used in
KACMBP.

22

inP1

~clog ~clog

inP1 inP1

~clog

clog clog

~arm~arm

armarm

Flush

DunkP1

DunkP2

DunkP1

DunkP2

Flush

arm

arm

~clog

inP2 inP2 inP2

~clog ~clog

arm arm

Flush Flush

~arm ~arm

clogclog
DunkP2 DunkP2

DunkP1 DunkP1

~inP2~inP2 ~inP2

~inP1~inP1~inP1

0

0

1 1

11

2

22

2

g2

g1

Figure 3: Multiple planning graphs for CBiTC, with
facts used for hsummax

(CSG) circled, facts used for
hlevelmax

(CSG) in boxes, and actions for hRPmax
(CSG)

and hRPunion
(CSG) in ovals.

This max nullifies the chance of getting any overlap infor-
mation between the worlds, but taking an average or sum
wouldn’t help either because there is no way to tell overlap
by looking at the numerical estimates for each world.

From the CBiTC, the goal is CSG = [¬clog,¬arm].
Computing the hsummax

(CSG) (Figure 3) finds hsumγ1
=

1 (denoted by circled facts in the top graph), hsumγ2
= 1

(denoted by the circled facts in the bottom graph), and the
max, hsummax

(G) = 1.

Level-max (hlevelmax
): Similar to hsummax

, hlevelmax
is

found by first finding hlevelγk
to get di−k for each graph

γk ∈ Γ, then the max of this value across the graphs is
taken. hlevelγk

(CSi) is computed by taking the minimum
among the Sj ∈ ξ(CSi), of the first level (lev(Sj)) in the
planning graph where no two literals in the constituent Sj

are mutually exclusive. Formally:
hlevelγk

(CSi) = minSj∈ξ(CSi)(lev(Sj))

hlevelmax
(CSi) = maxγk∈Γ(hlevelγk

(CSi))
Here we use χ1 = minimum or estimate to get hlevelγk

,
then χ2 = maximum for hlevelmax

. Note, this heuristic is
admissible. By the same reasoning as in classical planning,
the first level where all the subgoals are non-mutex is an
underestimate of the true cost of a state. This holds for each
of the graphs. Taking the max accounts for the most difficult
world in which to achieve a constituent state of CSi and is
thus a provable underestimate of h∗.

For the CBiTC goal CSG = [¬clog,¬arm], computing
the hlevelmax

(CSG) (Figure 3) finds hlevelγ1
= 2 (denoted

by level containing facts inside boxed for the top graph),
hlevelγ2

= 2 (denoted by level containing facts inside boxed
for the top graph), and the max, hlevelmax

(CSG) = 2.

RP-max (hRPmax
): Following the same maximization logic

as the hsummax
and hlevelmax

heuristics for χ2, but to ac-
count for the actual number of actions used, hRPmax

is
computed by finding the relaxed plan from the constituent

Sj ∈ CSi that contributes to the hlevelγk
(CSi) for each

γk ∈ Γ and taking the max of the number of actions in the
relaxed plan.

The relaxed plan for a clausal state CSi is computed by a
backward chaining search on the planning graph. We start at
the constituent Sj ∈ ξ(CSi), such that Sj is the constituent
at level b, computed in hlevelγk

(CSi) = b. From Sj at level
b, for each subgoal ch ∈ Sj , a supporting action is selected
(ignoring mutexes) from the bth action level. Once, a sup-
porting set of actions (stepb) is determined, the support for
the actions in stepb is added to the list of subgoals to support
for level b − 1. Then, we look at level b − 1 the algorithm
repeats and continues until the initial level is reached. Thus,
a relaxed plan is the set RPγk

={step1,γk
, ..., steps,γk

, ...,
stepb,γk

}. Formally, when hlevelγk
(CSi) = b:

hRPmax
(CSi) = maxγk∈Γ

(

b
∑

s=1
| steps,γk

|

)

Here χ1 = minimum is used to get the cheapest estimated
relaxed plan for each initial state, then χ2 = maximum is
used to get di. This gives an inadmissible estimate for the
number of actions to reach the easiest constituent state in the
most difficult world.

For CBiTC, the goal is CSG = [¬clog,¬arm]. Com-
puting the hRPmax

(CSG) (Figure 3) finds hRPγ1
= 3

(step1 = Flush, step2 = {DunkP1, F lush} actions
in ovals for the top graph), hRPγ2

= 3 (step1 =

Flush, step2 = {DunkP2, F lush}), actions in ovals for
the bottom graph), and the max, hRPmax

(CSG) = 3. No-
tice that this is the closest multiple graph estimate, so far, for
h∗(CSG), but it can be improved.

RP-union (hRPunion
): Observing the relaxed plans com-

puted in the BiTC example given for hRPmax
, the relaxed

plans extracted from each graph are different. This infor-
mation can be leveraged to account for the interaction or
overlap of the two worlds. Notice, that step2 for both
graphs contained a Flush action which is not dependent on
whether the bomb is in either package. Also, step2 con-
tains a DunkP1 for the first graph, and DunkP2 for the
second graph. Now, taking the union of the two relaxed
plans, would give step2 = {DunkP1, DunkP2, F lush},
thus accounting for the action that is the same between pos-
sible worlds and the actions that differ.

A relaxed plan is computed for each graph γk ∈
Γ, as in hRPmax

. Then, starting from the last action
level(hlevelmax

(CSi)) and repeating for each steps until the
first level, we union the sets of actions for each relaxed plan
at each level into another relaxed plan [RPunion(CSi) =
∀stepi

∪γk∈Γ stepi,γk
]. Notice, the relaxed plans are right-

aligned, hence the unioning of steps proceeds from the
last step of each relaxed plan to create the last step of
stepb,union, then the second to last step for each relaxed plan
is unioned for stepb−1,union and so on. Then the sum of the
numbers of actions of the each steps in the RPunion is used
as the heuristic value. Formally, when hlevelmax

(CSi) = b:

hRPunion
(CSi) =

b
∑

s=0
| steps,union |

Here χ1 = minimum, and χ2 = union.
hRPunion

doesn’t follow the same form as the rest of the
techniques, rather it estimates di by finding the relaxed plans

23

corresponding to minjdij for each k , then unions the re-
laxed plans to get the overlap of plans for relevant states.

The insight of this heuristic is that taking the union of
action levels of relaxed plans between graphs will account
for the same action being used at the same level in multiple
worlds, or overlap. Thus the unioned relaxed plan contains
a representative set of overlapping actions for achieving the
relevant states in a clausal state in all worlds.

For the CBiTC goal CSG = [¬clog,¬arm], comput-
ing the hRPunion

(CSG) (Figure 3) finds RPγ1
= {step1 =

Flush, step2 = {DunkP1, F lush}}, RPγ2
= {step1 =

Flush, step2 = {DunkP2, F lush}}, and RPunion =
{step1 = Flush, step2 = {DunkP1, DunkP2, F lush}}.
Thus, hRPunion

(CSG) = 4, which is equal to the optimum
estimate h∗(CSG).

Reducing the Cost of Estimating Belief State
Distance with Clausal States
Searching in the space of clausal states complicates heuris-
tic computation by us having to reason about the reachability
of sets of states from sets of states. We want to find a state
within the set BSi that is the easiest to reach, with respect
to the number of actions needed of each γk in the set of n
planning graphs to get di. When n > 1, we are using mul-
tiple planning graphs to represent different initial states, and
need to perform some combination χ2 of the di−k measures
for each γk in the set of n planning graphs to get di. Other-
wise when n = 1, di is simply the di−1 measure. However,
there still remains the issue of finding di−k from the dij−k’s.
There are three main ways ,Θ, to get the cost di−k measures
of a belief state BSi, with respect to an initial belief state
BSI .

• Θ1 : Expand ξ(CSi) and get dij−k, for each of the min-
imal states Sj on graph γk corresponding to Sk ∈ BSI .
Then we could combine all of the dij−k to get di−k by
using χ1.

• Θ2 : Cost the cheapest minimal set of literals to get only
one dij−k that is used for di−k. This corresponds to χ1

being an estimate.

• Θ3 : Cost the estimated cheapest minimal state Si to get
only one dij−k that is used for di−k. This also corre-
sponds to χ1 being an estimate.

The first, and complete, method Θ1 for finding di−k is to
explicitly expand a clausal state into the set of states that it
represents (equated with converting CNF to DNF), by find-
ing ξ(CSi), then getting a heuristic estimate for each state in
ξ(S) and taking the minimum, maximum, or average for χ1.
Clearly, a clausal state can represent an exponential number
of states, so we desire a more efficient (less explicit) means
of finding the di−k. Notice that if χ1 were a summation
that we would be able to adjust the heuristic to consider the
cardinality of CSi.

The second idea Θ2 is to combine the cost of a set of liter-
als that minimally satisfies a clausal state. This set of literals
isn’t checked for consistency, and may not even represent a
valid state. It is found by assuming χ1 = estimated mini-
mum and taking the min cost literal from each clause (not
checking the resulting set for consistency). Θ2 is used for
the single planning graph heuristics as well as hsummax

. All
other heuristics, besides hcard use either Θ1 or Θ3.

The third idea Θ3 is to construct only one state and use
it for the estimate (estimating χ1 = minimum), thus avoid-
ing the DNF expansion cost of Θ1

7. The state we construct
is partially specified by all of the unit clauses in the clausal
state. However there still remains the choice of an appropri-
ate subset of the literals of the non-unit clauses to complete
the state8. The appropriate subset is chosen such that the
constructed state is the estimated easiest to reach of the set.
This is similar to Θ1 when χ1 = min, but we avoid costing
| ξ(CSi) | −1 states. The greedy approach to selecting the
subset of literals from the non-unit clauses is to take the sin-
gle literal from each clause that appears at the lowest level
in the planning graph. The algorithm for this selection is as
follows:
(1) Sort the literals in each non-unit clause by increasing
level of first appearance.
(2) Sort the set of non-unit clauses in decreasing order, using
the level of the first element of the clause as the key
(3) While the set of non-unit clauses is non-empty and the
current partial state is a consistent state (i.e. the literals of
the partial state appear non-exclusive at some level in the
graph)

(a) Insert the first literal of the first non-unit clause into
the partial state

(b) Remove all clauses from the list of non-unit clauses
that contain the literal from (a)
(4) If the complete constructed state or partial state is not
consistent, then the cost of the clausal state is set to infin-
ity, otherwise the cost of the clausal state is the cost of the
constructed state.

Empirical evaluation
This section presents the results9 of our experimentation
with the heuristics within CAltAlt. We also compare
with the competing approaches (CGP, GPT, HSCP, and
KACMBP) for several domains and problems.

The implementation of CAltAlt uses several off the shelf
planning software packages. The pieces of CAltAlt are the
IPC parser for PDDL 2.1 , the HSP-r search engine [Bonet
and Geffner, 1999], and the IPP planning graph [Koehler et
al., 1997]. The custom parts of the implementation include
the action representation, clausal state representation and re-
gression operator, not to mention the heuristic calculation.

In addition to the standard domains used in conformant
planning–such as Bomb-in-the-Toilet variants and Cube cor-
ner, we also developed two new domains. We chose these
domains because they demonstrate higher difficulty in the at-
tainment of subgoals, having many plans of varying length.

The Rovers domain is a conformant adaptation of the
analogous domain of the IPC. The added uncertainty to the
initial state is conditions that rule whether an image objec-
tive is visible from various vantage points due to weather.
The goal is to upload an image of an objective, thus a confor-
mant plan requires visiting all of the possible vantage points

7Notice, that using Θ3 for a single planning graph doesn’t make
sense because consistent states cannot be identified on a planning
graph built from unioned initial states.

8Only one literal from each clause is taken because selecting
more literals will only increase the cost of the state.

9All tests were run in Linux on a Pentium 4 1.6GHz w/512MB
RAM.

24

Problem HCard HMax HSum HSumMax HLevelMax HRPMax Θ1 HRPMax Θ3 HRPUnion
Rover1 - - - - 129/5 147/5 145/5 145/5

2 - 3390/8 182272/8 13701/8 4751/8 420/9 420/9 331/9
3 - 23857/10 18185/10 13542/10 5985/10 494/11 489/11 636/11
4 - - - 736663/13 - 5173/15 5118/15 15530/15

Logistics1 - 1217/9 147/9 323/9 198/9 343/11 333/11 321/11
2 - - 26438/15 24638/15 2844/15 11312/17 8979/17 6144/19
3 - - 2611/14 10079/14 1973/14 7952/17 7536/17 1723/17
4 - - - - 9118/18 306615/22 241311/19 164748/26

BiT2 17/2 3/2 3/2 3/2 5/2 10/2 11/2 11/2
10 78/10 3920/10 3921/10 2737/10 5118/10 10560/10 10253/10 462/10
20 364/20 - - - - - - 3380/20
30 - - - - - - - 41114/30
40 - - - - - - - 307590/40

BiTC2 6/3 4/3 4/3 5/3 11/3 16/3 16/3 16/3
10 106/19 9798/19 10072/19 5001/19 10016/19 197191/19 179249/19 801/19
15 353/29 - - - - - - 1987/29
20 - - - - - - - 4077/39
25 - - - - - - - 8218/49
30 - - - - - - - 66287/59

Cube2 24682/4 10/3 10/3 19/3 40/3 74/3 64/3 64/3
4 - 434/9 434/9 1486/9 2207/9 5021/9 2704/9 3671/9

Figure 4: This table shows the performance of the planning graph heuristics within CAltAlt. All heuristics, unless otherwise
indicated, use w = 5, and Θ3, where applicable. Legend – [Search time (ms)/Plan length], “-”: Out of Memory or Out of Time.

Problem CGP GPT HSCP KACMBP HLevelMax HRPUnion
Rover1 135/5 25960/5 3530/7 100/5 129/5 145/5

2 5788/7 - 10690/10 700/13 4751/8 331/9
3 - - 10780/10 710/13 5985/10 636/11
4 - - 30680/13 800/22 - 15530/15

Logistics1 64/8 69/9 40/26 20/12 198/9 321/11
2 1323/11 580/15 120/26 200/12 2844/15 6144/19
3 168/10 262/11 - 180/28 1973/14 1723/17
4 4559/14 4756/18 - 210/28 9118/18 164748/26

BiT2 2/1 42/2 20/2 10/2 5/2 11/2
10 63/1 234/10 30/10 20/10 5118/10 462/10
20 1032/1 - 40/20 40/20 - 3380/20
30 5492/1 - 20/30 50/30 - 41114/30
40 16005/1 - 50/40 80/40 - 307590/40

BiTC2 2/3 92/3 20/3 10/3 11/3 16/3
10 - 288/19 20/19 10/19 10016/19 801/19
15 - 34280/19 30/19 40/19 - 1987/29
20 - - 10/39 80/39 - 4077/39
25 - - 20/49 90/49 - 8218/49
30 - - 10/59 140/59 - 66287/59

Cube2 42/3 0/3 10/3 40/3 64/3
4 63/9 0/9 0/9 2207/9 3671/9

Figure 5: This table shows the performance of CGP,
GPT, HSCP, KACMBP in comparison with hlevelmax

and
hRPunion

. Legend – [Search time (ms)/Plan length], “-”:
Out of Memory or Out of Time.

and taking a picture. Significant negative interaction of ac-
tions comes in through having to calibrate the camera on an
objective before taking the picture, but navigating the rover
will de-calibrate the camera.

The Logistics domain is a conformant adaptation of
the classical Logistics domain where trucks and airplanes
move packages. The uncertainty is the initial locations of
packages. The problems scale by adding packages and
cities. Logistics shows that conformant planning problems
can require reachability heuristics, but the cost of computing
the heuristic must be considered in relation to the benefit of
the search.

Figure 4 shows the performance of the heuristics within

CAltAlt where the heuristic weight is 5 for all heuristics.
For Rovers, hRPunion

performs well, but the unioning ap-
proach for χ2 may be a bit more costly than simply taking a
maximum, as in hRPmax

. However, in Logistics the union-
ing is worth the effort because it reduces the overall search
time significantly over maximization. Furthermore, using
sets of actions as the d values proves to be more informed
than simply using numerical estimates. With the exception
of hlevelmax

, the heuristics based on numerical estimates are
largely uninformed on the Logistics and Rovers domains.
The reason these other heuristics do not provide as much rel-
evant information is that they are either based on single plan-
ning graphs and/or use Θ2 to cost a belief state on a planning
graph; this means that we’re not considering overlap of indi-
vidual world plans or mutex interactions of literals. Notice,
that hcard doesn’t solve any of the problems in these two do-
mains because, as we indicated in section 3, cardinality does
not provide accurate reachability information that is neces-
sary in more complex domains.

However, hcard does perform better in the traditional con-
formant planning domains: BiT , BiTC, and Cube, as ex-
pected. The surprising thing is that hcard, while outperform-
ing in easier problems, does not scale as well as hRPunion

.
hRPunion

’s advantage over hcard is that it considers the
union of non-unit costs of the minimum-cost Sj ∈ ξ(CSi)
in determining reachability estimates rather than the sum
of unit costs of ξ(CSi). The advantage of hRPunion

over
the other planning graph heuristics in these domains is that
it actually counts the number of actions that are needed
among all worlds. Simply considering a max among worlds
gives no discernible information about reachability because
among individual worlds the initial states are equidistant.

Figure 4 also shows a comparison of hRPmax
when us-

ing Θ1 and Θ3 to illustrate the speedup of not explicitly ex-
panding ξ(CSi). The benefit of using Θ3 appears in prob-
lems where there are many clauses in a clausal state, hence
ξ(CSi) is large, such as in Logistics and in Cube. How-

25

ever, the gain is small in problems were uncertainty is more
limited.

Comparisons to other planners: Although this work is
aimed at giving a general comparison of heuristics for con-
formant planning, we also present a comparison of two
heuristics within CAltAlt to some of the other leading ap-
proaches to conformant planning. Note, since each approach
uses a different planning representation (BDDs, Graphplan,
or explicit state space), not all of which even use heuris-
tics, it is hard to get a standardized comparison of heuristic
effectiveness. Furthermore, not all of the planners use pddl-
like syntax; HSCP and KACMBP use AR encodings which
may give them an advantage in reducing the number of liter-
als and actions. Nevertheless, figure 5 compares CGP, GPT,
HSCP, and KACMBP with hlevelmax

and hRPunion
with re-

spect to run time and plan length.
An observation independent of the planning substrate is

the optimality of plans. Optimality can be ensured by us-
ing admissible heuristics, but of the heuristic approaches
that are inadmissible it is interesting to note that HSCP and
KACMBP tend to generate plans that are highly in optimal
with respect to plans generated by CAltAlt using hlevelmax

and hRPunion
in the Rovers and Logistics domains.

For Rovers, hlevelmax
and hRPunion

provide the
best guidance by outperforming CGP, GPT, HSCP, and
KACMBP (on some problems). GPT builds a model of over
10000 states for Rovers1, and cannot scale for the other
versions of Rovers. CGP has trouble constructing its plan-
ning graphs as the conformant depth of the goal increases.
The bi-level planning graphs in CAltAlt can handle large
domains better than CGP’s planning graphs, and thus scale
much better.

Logistics provides a more fertile means of comparison.
The first lesson to be learned is that HSCP’s cardinality
heuristic, similar to hcard, does not scale well. Yet HCSP
does better than hcard, indicating that the planning substrate,
opposed to the heuristic, may be responsible for the per-
formance. Second, Logistics can have relatively complex
planning graphs and as problems scale to include more ini-
tial states, multiple planning graphs become less attractive.
This issue is addressed in the following discussion.

The BiT and BiTC domains show that CAltAlt is com-
petitive with CGP and GPT, but is dominated by HSCP and
KACMBP with respect to handling common structure of
problems.

For Cube, the planning graph heuristics seem to perform
well with respect to the other planners in regards to search
time, but have problems scaling to the level of other planners
as the number of initial states increases exponentially. This
problem is addressed, in part, by the followed discussion.

Future Work
The future work on CAltAlt will take two directions, speed-
ing up the computation of heuristics, and adding non-
deterministic actions .

Heuristic Computation Cost: The advantage of our ap-
proach to computing heuristics for conformant planning
with planning graphs is that we can give significant direc-
tion to conformant planners. Additionally, we’ve shown that
conformant domains exist that necessitate such accurate es-
timates. However, in the current implementation, the cost

of computing the multiple planning graph heuristics is still
quite high. Instead of deriving more powerful heuristics,
similar to those in AltAlt, which will only increase compu-
tation cost; we are first pursuing some very promising ideas
for reducing the computation cost: (1) representing a subset
of the initial states as planning graphs and (2) condensing
the multiple planning graphs to one by using support labels
on propositions. These improvements are based on the in-
sight that since the planning graphs are being used as a basis
for heuristics—rather than as a basis for search, as in the
case of CGP—we can limit the amount of effort we expend
in the heuristic computation, by trading off heuristic accu-
racy (c.f. [Nguyen et al., 2002]). Choosing the right sub-
set of initial states to use for building graphs seems tricky,
but may be facilitated though identifying uncertainty depen-
dencies between literals and only building graphs with the
dependency sets. In [Kurien et al., 2002], the authors point
out that through random sampling one can often find plans
for an initial state that contains plans for other ’easier’ initial
states, which may also be useful in selecting the initial states
for building a partial set of planning graphs. The multiple
planning graphs can represent a large amount of redundancy
when the possible worlds are quite similar. To avoid this, we
are pursuing an idea called labeled planning graphs, which
use a single condensed graph. The literals and actions of the
condensed graph would be labeled to indicate the worlds in
which they are supported. When computing heuristic costs,
a literal’s level is not the first level where it appears, but the
first level where its label indicates it has full support in ev-
ery world. The labeled graphs would save time in planning
graph construction and heuristic cost combination among
worlds because we could have χ2 as a direct estimate to get
di. We are currently implementing and investigating these
improvements to heuristic computation.

Non-deterministic Actions: The addition of non-
deterministic actions to CAltAlt will require two consider-
ations: (1) The clausal state regression operation is already
general enough to handle the case where an action’s disjunc-
tive effects must satisfy a clausal state to do strong planning
but needs to be implemented and tested, and (2) the plan-
ning graph construction must change to (a) split planning
graphs to handle all non-deterministic outcomes of actions
as in CGP, (b) ignore the disjunction in action effects, or
(c) insert dummy actions for each disjunctive outcome of a
non-deterministic action. Notice, changing the construction
of the planning graph in any of these three ways will not ef-
fect completeness of the search since the planning graph is
only used for heuristic computation.

Related Work
The recent interest in conformant planning can be traced
to CGP [Smith and Weld, 1998], a conformant version of
Graphplan, where the graph search is conducted on several
planning graphs, each constructed from one of the possi-
ble initial states. More recent work on C-plan [Castellini
et al., 2001] and Frag-Plan [Kurien et al., 2002] generalize
the CGP approach by ordering the searches in the different
worlds such that the plan for the hardest to satisfy world
is found first, and is then extended to the other worlds. Al-
though CAltAlt utilizes planning graphs similar to CGP and
Frag-plan, in contrast to them, it only uses them to compute

26

reachability estimates. The search itself is conducted in the
space of belief states.

Another strand of work models conformant planning as a
search in the space of belief states. This started with Gene-
sereth and Nourbakhsh [1993], who concentrated on formu-
lating a set of admissible pruning conditions for controlling
search. There were no heuristics for choosing among un-
pruned nodes. GPT [Bonet and Geffner, 2000] extended
this idea to consider a simple form of reachability heuris-
tic. Specifically, in computing the estimated cost of a belief
state, GPT assumes that the initial state is fully observable.
The cost estimate itself is done in terms of reachability (with
relaxed dynamic programming rather than planning graphs).
GPT’s reachability heuristic is similar to our hmax heuristic
because they both underestimate the cost of the farthest (max
distance) state by looking at a deterministic relaxation of the
problem. In comparison to GPT, CAltAlt can be seen as
using heuristics that do a better job of considering the cost
of the belief state across the various possible worlds.

A sub-strand of search in belief states is the MBP-
family of planners—CMBP, HSCP [Bertoli et al., 2001] and
KACMBP [Bertoli and Cimatti, 2002]. In comparison to
CAltAlt, the CMBP family of planners all represent belief
states in terms of binary decision diagrams, and action ap-
plication is modeled as modifications to the BDDs. CMBP
and HSCP support both progression and regression in the
space of belief states, while KACMBP is a progression plan-
ner. While CMBP concentrated on efficient BDD manipula-
tions, HSCP employs cardinality heuristic in addition. Be-
fore computing heuristic estimates, KACMBP pro-actively
reduces the uncertainty (disjunction) in the belief state by
taking actions that effectively force the agent into states with
reduced uncertainty. The motivation for this approach, vali-
dated by our current empirical study, is that applying heuris-
tics to belief states containing multiple states may not give
accurate enough direction to the search. While reducing the
uncertainty seems to be an effective idea, we note that (a)
not all domains may contain actions that reduce belief state
uncertainty and (b) the need for uncertainty reduction may
be reduced when we have heuristics that effectively reason
about the multiple worlds (viz., our multiple planning graph
heuristics). Nevertheless, it would be very fruitful to inte-
grate knowledge goal ideas of KACMBP and the reachabil-
ity heuristics of CAltAlt to handle domains that contain both
high uncertainty and costly goals.

In contrast to these domain-independent approaches that
only require models of the domain physics, PKSPlan [Bac-
chus, 2002] is a forward-chaining knowledge-based planner
that requires richer domain knowledge. Finally, CAltAlt is
also related to, and an adaptation of the work on reachability
heuristics for classical planning, including AltAlt [Nguyen
et al., 2002], FF Hoffmann and Nebel [2001] and HSP-r
Bonet and Geffner [1999].

Conclusion
With the intent of scaling conformant planning to domains
where reachability of subgoals is a non-trivial search prob-
lem, we have:

1. Indicated the heuristic measures for conformant planning
that should be estimated for accurate search control.

2. Shown how to compute such heuristic measures on plan-
ning graphs when using a clausal, factored representation
of belief states.

3. Provided empirical comparisons of these measures.

We have also presented extensions to our work that are
aimed at scaling conformant planning, through reduced
heuristic computation, to consider even more complex do-
mains.

Acknowledgements: We thank Minh B. Do, Romeo
Sanchez, Terry Zimmermam, and Satish Kumar Thittama-
ranahalli for helpful discussions and feedback. We also
thank David Smith and Piergiorgio Bertoli for help with the
CGP and MBP planners. This research is supported in part
by the NASA grants NAG2-1461 and NCC-1225, and the
NSF grant IRI-9801676.

References
Ronald P.A. Petrick Fahiem Bacchus. A knowledge-based ap-

proach to planning with incomplete information and sensing. In
Artificial Intelligence Planning Systems, pages 212–221, 2002.

Piergiogio Bertoli and Alessandro Cimatti. Improving heuristics
for planning as search in belief space. In Artificial Intelligence
Planning Systems, pages 143–152, 2002.

Piergorgio Bertoli, Alessandro Cimatti, and Marco Roveri. Heuris-
tic search + symbolic model checking = efficient conformant
planning. In ijcai, 2001.

Blai Bonet and Hector Geffner. Planning as heuristic search: New
results. In ECP, pages 360–372, 1999.

Blai Bonet and Hector Geffner. Planning with incomplete informa-
tion as heuristic search in belief space. In Artificial Intelligence
Planning Systems, pages 52–61, 2000.

Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella.
Improvements to sat-based conformant planning. In 6th Euro-
pean Conference on Planning, 2001.

Michael R. Genesereth and Illah R. Nourbakhsh. Time-saving tips
for problem solving with incomplete information. In Proceed-
ings of the 11th National Conference on Artificial Intelligence,
pages 724–730, Menlo Park, CA, USA, July 1993. AAAI Press.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253–302, 2001.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extend-
ing planning graphs to an ADL subset. Technical Report re-
port00088, IBM, 1, 1997.

James Kurien, P. Pandurang Nayak, and David E. Smith. Fragment-
based conformant planning. In Artificial Intelligence Planning
Systems, pages 153–162, 2002.

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez
Nigenda. Planning graph as the basis for deriving heuristics for
plan synthesis by state space and CSP search. Artificial Intelli-
gence, 135(1-2):73–123, 2002.

Edwin P. D. Pednault. Synthesizing plans that contain actions with
context-dependent effects. Technical Memorandum, AT&T Bell
Laboratories, Murray Hill, NJ, 1987. (submitted to the Journal
of Artificial Intelligence).

David E. Smith and Daniel S. Weld. Conformant graphplan. In
Proceedings of the 15th National Conference on Artificial In-
telligence (AAAI-98) and of the 10th Conference on Innovative
Applications of Artificial Intelligence (IAAI-98), pages 889–896,
Menlo Park, July 26–30 1998. AAAI Press.

27

