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Abstract

Automated validation of software systems with model
checking technology either certifies that a given designs con-
tain no specification error (like a deadlock or a failed asser-
tion), or falsifies the desired property in form of a counterex-
ample trace from the initial configuration to the error.

Since counterexamples can be seen as goal establishing
plans, this paper studies the appropriateness of problem do-
main description languages (PDDL) to specify software val-
idation problems. The selected software application domain
are communication protocols, for which a structured transla-
tion from a static subset of the protocol modeling language
PROMELA to PDDL2.1 is devised. It exploits the represen-
tation of protocols as communicating finite state machines.

First experimental results with metric heuristic search action
planners are promising. Since the inferred problem and do-
main structures are restricted to currently accepted PDDL
standards, we expect the protocol domain to be included as
a benchmark in the next international planning competition.

Nevertheless, the modeling process makes some limits of
PDDL explicit. Subsequently, possible extensions to PDDL
are discussed that would ease specification of general soft-
ware systems and that could widen the applicability of plan-
ning technology to software verification.

Introduction
Model checking (Clarke, Grumberg, & Peled 1999) is a for-
mal method for the verification of synchronous and asyn-
chronous systems. It allows a push-button validation of
specified properties given in some temporal logic. Since
all model-checking techniques rely on state-space enumera-
tion, the major limitations to model checking are large state
space sizes. Note that many model checking problems refer
to safety properties only. Assertions, global invariances and
deadlock-freedom are important classes of safety proper-
ties. Roughly speaking, safety properties state that nothing
bad will happen. Safety properties can be falsified through
displaying one error state.

In action planning (Allen, Hendler, & Tate 1990), do-
mains and problem instances are specified in a problem
domain description language, PDDL for short (McDermott

2000). PDDL planning problems usually come in two parts:
the problem domain file and the instance specific file. In the
first file, predicates and actions are chosen, while in the sec-
ond file the domain objects, the initial and the goal states are
specified. Only the instance specific file refers to grounded
predicates, while actions and predicates are specified with
object parameters. Recent problem domain description lan-
guages developed for action planning, like PDDL2.1 (Fox
& Long 2001) are capable to deal with numerical quantities,
action duration and plan objective functions (metrics).

Action planning and model checking problems are
closely related (Giunchiglia & Traverso 1999). Both ap-
proaches explore state spaces of propositionally labeled
states, possibly extended with numerical state information.
For the case of deterministic planning and safety proper-
ties, both areas aim at finding a possibly short path to a
pre-specified set of terminal states or at reporting, that no
such path exists. Consequently, deterministic planning can
be casted as error detection for safety model checking. In
planning the path is called a plan in form of a sequence of
actions, while in model checking the path of state transi-
tions is referred to as a counterexample.

Several recent planners apply model checking technol-
ogy by exploring the planning space with binary deci-
sion diagrams (BDDs) as concise representations for sets
of states, actions and plans. BDDs have been shown to
compare well with other optimal determinstic planning ap-
proaches (Edelkamp & Helmert 2001). The succinctness
of BDDs is even more evident in solving non-deterministic
(Cimatti, Roveri, & Traverso 1998) and conformant plan-
ning problems (Cimatti & Roveri 1999). Through the ap-
plication of algebraic decision diagrams the performance
gain has recently be migrated to probabilistic planning for
finding optimal policies in factored Markov decision pro-
cesses (Hoeyet al. 1999; Feng & Hansen 2002).

In (Dierks, Behrmann, & Larsen 2002) PDDL is con-
verted to the input language of the model checker UPPAAL,
namely timed automata. UPPAAL uses constraints to rep-
resent states symbolically. Simpler problems can be solved
optimally by the tool. The numerical computations are fur-



ther restricted to difference constraints, to build the internal
representation of shortest path reduced temporal networks.
Running real-time clocks can only be reset to zero. On the
other side, UPPAAL allows to progress and project sym-
bolic states (represented as polytopes) and, therefore, can
cope with infinite branching problems.

But algorithmic schemes are also exported in the other
direction. Satisfiability planning (Kautz & Selman 1996)
has been given a semantics for automated validation and
has been coined to the termbounded model checking(Biere
et al. 1999). Directed model checkingapplies heuristic
search (Pearl 1985) to accelerate error detection. It exploits
information of the goal distance to focus the search. Algo-
rithms A* (Hart, Nilsson, & Raphael 1968) and IDA* (Korf
1985) additionally incorporate the estimated path length
into the evaluation function to obtain optimal solution
paths (Behrmannet al. 2001).

Heuristic search is very successful in planning. The
first heuristic search planner, HSP (Bonet & Geffner 2001),
computes the heuristic values of a state by adding (maxi-
mizing) depth values for each fluent for an overestimating
(admissible) estimate. These values are retrieved from the
fixpoint of a relaxed exploration. Since the technique is
similar to the first phase of building the layered graph struc-
ture in Graphplan (Blum & Furst 1995), HSPr (Haslum &
Geffner 2000) extends the approach by excludingmutuals;
themax-pair heuristiccomputes a distance value to the goal
for each pair of atoms. HSP has inspired the planners like
FF (Hoffmann & Nebel 2001), which solves a relaxed plan-
ning problem for each encountered state in a combined for-
wardandbackward traversal. With enforced hill climbing,
FF furtherly employs another greedy search strategy to re-
duce the explored portion of search space. It makes use of
the fact that phenomena like big plateaus or local minima
do not likely occur in benchmark planning problems.

Alternatively, the pattern database heuristic can be used
to approximate goal distances (Edelkamp 2002b). It com-
putes a large lookup-table prior to the search. The database
is queried in the overall search process and consists of pat-
tern / distance pairs and is generated through a complete
backward exploration of certain problem abstractions. The
estimate is consistent and different pattern databases can be
merged, by means that their respective heuristic values are
to be maximized or added. This heuristic can also be in-
cluded in BDD exploration engines.

This paper introduces recent advances in planning to
model checking. In difference to the expected need for
adding planning technology into a model checking tool, the
paper puts forth the question of how far one can utilize and
extend PDDL to express software verification problems.
We exhibit the advantages PDDL planners in model check-
ing domains will have, including static analysis tools, au-
tomated symmetry detection, refined heuristic estimators,

durative transitions, objective functions, and parallel solu-
tion paths. By exploiting the representation of protocols as
communicating asynchronous processes, a PDDL domain
is devised, accessible for all current metric planners. In
the experiments we consider automated falsification of sim-
ple protocols through PDDL2.1 models with the planners
Metric-FF (Hoffmann 2002) and MIPS (Edelkamp 2003b),
compared to results obtained by two efficient explicit state
model checkers.

As performance drawbacks of the approach we discuss
the loss of domain-dependent implementation issues and
acceleration techniques, such as partial order reduction and
bit-state hashing. Since we are also interested in the evalua-
tion of expressivity in current PDDL2.1, we reflect limits in
the modeling process and grade some requirements general
software model checking would impose, including indi-
rect variable addressing, complex goals, and – most promi-
nently – dynamic object creation, which is suggested to be-
come a new feature in upcoming description languages.

Communication Protocols

Communication protocols (Holzmann 1990a) are concur-
rent software systems with main purpose to organize infor-
mation exchange between individual processes. Due to the
interleaving of process executions and the communication
load, the number of global system states is large even for
simple and moderate sized protocol specifications. By this
combinatorial growth many protocol designs contain subtle
bugs. Therefore, in the design process, automated model
checking procedures are needed to certify that stated asser-
tions or global invariants are valid, and that no deadlock
occurs. Validating these kinds of properties corresponds to
solving a reachability problem in the state space graph.

The protocol model refers to a collections of extended
communicating finite state machines as described, for in-
stance, in (Brand & Zafiropulo 1983) and (Gouda 1993),
where communication between two processes is either real-
ized via synchronous or asynchronous message passing on
communication channels or via global variables. Sending
or receiving a message is an event that causes a state transi-
tion. Successful protocol software model checkers like the
SPIN validation tool (Holzmann 1997) interpret the state
space as a cross product of such asynchronous finite state
machines. For SPIN, the communication protocol has to
be provided in PROMELA syntax, a c-like modeling lan-
guage, extended by non-deterministic choices governed by
selecting conditions (Holzmann 1990a).

The protocol model checker SPIN explores the result-
ing finite search space. Besides depth-first search variants,
SPIN may also apply the Supertrace algorithm and sequen-
tial hashing to examine various beams in the search trees
up to a certain threshold depth. The explicit state model
checker also features partial order reduction (Peled 1998),



Figure 1: The dining philosophers problem.

mtype={fork}
chan forks[3] = [1] of {bit};

active [3] proctype philosopher() {
forks[_pid]!fork;
do
:: forks[_pid]?fork ->

forks[(_pid+1)%3]?fork;
forks[_pid] !fork;
forks[(_pid+1)%3]!fork

od
}

Table 1: Three dining philosophers in PROMELA.

fast hash functions based on a cyclic polynomial represen-
tation of state encodings, and different state compression
techniques (Holzmann 1990b).

Consider the following simple protocol domain in Fig-
ure 1: Dijkstra’s dining philosophers problem;n philoso-
phers sit around a table to have lunch. There aren plates,
one for each philosopher, andn forks side by side to the
plates. Since two forks are required to eat the spaghetti
on the plates, not all philosopher can eat at a time. More-
over, no communication except taking and releasing the
forks is allowed. The task is to devise a local strategy for
each philosopher that lets all philosophers eventually eat.
The simplest solution to access the left fork followed by
the right one, has an obvious problem. If all philosopher
wait for the second fork to be released there is no possible
progress; a deadlock has occurred. Modeled as a scalable
protocol, the according state space of all philosophers’ ac-
tivities (meditating, waiting, and eating) can rise rapidly.

A protocol in PROMELA is defined by a set of processes.
A process consists of statements on a set of local and global
variables. Furthermore, sending and receiving messages
via communication queues are supported. The PROMELA
specification for the dining philosopher solution is given
in Table 1. The problem has been implemented in a pure
message-passing form. The set of forks is represented as an
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Figure 2: Two state transition diagrams for one philosopher.

arrayforks of queues of size 1. The only operation is to
access or release a fork. For a philosopheri, forks[i]
represents the left fork andforks[(i+1)%3)] repre-
sents the right one. A philosopher is modeled as a process
(proctype in PROMELA) that performs an endless loop.
For grabbing a fork a philosopher tries to receive it from the
corresponding queue, while releasing a fork corresponds to
send a message. Receive and send operations are expressed
asqueue?message andqueue!message, respectively.

The communicating structure between processes can best
be viewed in the FSM structure of the problem. Figure 2
shows the enlarged and the compact automata representa-
tion for the philosopher process with four and three states,
where M, W, and E denote the moods meditating, waiting
and eating, respectively.

The first one with four states is similar to the one that is
applied in SPIN. It contains an additional state to release
the initial fork. In subsequent PDDL models we will refer
to the five states asstate-1 (additional state),state-6
(M), state-3 (W), state-4 (E), andstate-5 (©),
respectively. The second representation is added to con-
cisely illustrate the growth of the state space in Figure 3.
For three philosophers the states are members of the cross
product of the three automata, so that the reachable state
space is a subset of all33 states.

Directed Software Validation
Large state spaces call for different algorithmic aspects to
reduce the search efforts for exploration, one of which is
guided exploration with respect to the set of errors to be
found. Heuristic search algorithms take additional infor-
mation in form of an evaluation function into account and
return a number measuring the desirability of expanding a
state. When the states are ordered so that the one with the
best evaluation is expanded first and if the evaluation func-
tion estimates the cost of the cheapest path from the cur-
rent state to a desired one, hill-climbing finds solutions fast.
However, it may suffers from the same defects as depth-first
search – it is not optimal and may be stuck in dead-ends or
local minima. Early approaches (Lin, Chu, & Liu 1988;
Yang & Dill 1998) propose greedy best-first search with
simpler heuristics like the Hamming distance. Recent at-
tempts, e.g. (Cobleigh, Clarke, & Osterweil 2001) success-
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fully integrate different heuristic search algorithms to ac-
celerate the exploration. Most of the techniques can be
applied to the detection of safety properties only. In ad-
dition, (Edelkamp, Lluch-Lafuente, & Leue 2001) presents
an approach for shortening given error traces. (Godefroid
& Khurshid 2002) propose genetic algorithms for finding
errors in very large state spaces with different heuristics for
deadlock detection and assertion violation.

In explicit state model checking partial order reduction is
one of the other most effective techniques to avoid the state
explosion problem. It exploits the commutativity of asyn-
chronous system and constructs a reduced state space that
is equivalent to the original one. (Lluch-Lafuente, Leue, &
Edelkamp 2002) have shown that heuristic search and par-
tial order reduction are more or less orthogonal approaches,
i.e., one scheme does not loose its effectiveness if the other
technique is applied beforehand or in parallel.

The efficiency of guided exploration mainly depends on
the quality of the estimator function. We briefly recall the
estimates that have proven to be effective. The first two
are suited to deadlock detection, while the latter one allows
complex error formulae.

A first intuitive idea for estimating the distance to a dead-
lock is to count the number of non-blocked processes in the
current state. This estimate is a lower bound for all proto-
cols (except for those with rendezvous communication).

For the FSM distance heuristic we pre-compute for each
finite state machineM a matrixDM = (dij), wheredij de-
notes the minimal number of transitions from local statei
to local statej in M . Each matrixDM is computed with
an all-pairs shortest-path algorithm in cubic time. To cal-

culate the estimate, we additionally locate the set of dan-
gerous states for each FSM. A dangerous state is a state
from which all transitions are dangerous, and a dangerous
transition in turn is a transition that is not throughout exe-
cutable. For example, a transition representing an assign-
ment is not dangerous but transitions representing opera-
tions over queues or conditions over shared variables are
not always executable, e.g send or receive operations. If all
transitions from a state are dangerous, it is possible that no
transition is executable and that the corresponding process
is blocked.

The most general heuristic is the formula-based heuristic:
given a error formulae, devise an estimateH(S, e) of how
many transitions from the current stateS are necessary to
encounter a state, in which the formulae is true.H(S, e) is
defined recursively on the structure ofe.

The guided experimental model checking platform HSF-
SPIN (Edelkamp, Leue, & Lluch-Lafuente 2003) chooses
SPIN as a basis for the implementation with same in- and
output format, additionally providing an interface for AI
search methods. It currently features heuristic search algo-
rithms like best-first search, A* (Hart, Nilsson, & Raphael
1968), IDA* (Korf 1985) with bit-state hashing or transpo-
sition tables (Reinefeld & Marsland 1994), and some forms
of partial order reduction.

PDDL Modeling
Instead of the PROMELA file itself, we start with the au-
tomata representation that is produced by SPIN1. As said,
we assume all processes to be static. This imposes some re-
strictions to the original PROMELA model, since in this
case individual processes cannot invokes sub-processes.
Fortunately, in our set of benchmark protocol domains2, all
PROMELA processes (proctypes ) are invoked by a sin-
gle init process loop, which can be compiled away. The
PROMELA modifications are more or less textual substitu-
tions, which presumably can be provided by automated pro-
cedures. So far these changes have been performed manu-
ally, but even for involved examples this step is not a bur-
den for the protocol designer. In the general case of vali-
dating software, however, dynamic process invocation and
new object creation is crucial. This defect of PDDL expres-
sivity is discussed to the end of this paper.

A good model of a planning problem keeps the number
of parameters small. Grounding actions and predicates with
more than five object parameters causes problems for al-
most any planner that we know. Fewer parameters can best
be obtained by some additional flags that are set by one ac-

1We take the PROMELA input file, generate the corresponding
c-file, and run the executable with option-d to obtain the finite
state representations of all processes. We avoid state merging by
setting parameter-o3 as a option to SPIN.

2
www.informatik.uni-freiburg.de/ ∼lafuente/hsf-spin



(:action activate-trans
:parameters

(?p - process ?t - transition ?s1 ?s2 - state)
:precondition

(and
(trans ?t ?s1 ?s2)
(at-process ?p ?s1)

)
:effect

(activate ?p ?t)
)

(:action perform-trans
:parameters

(?p - process ?t - transition ?s1 ?s2 - state)
:precondition

(and
(trans ?t ?s1 ?s2)
(ok ?p ?t)
(at-process ?p ?s1)

)
:effect

(and
(at-process ?p ?s2)
(not (at-process ?p ?s1))
(not (ok ?p ?t))

)
)

Figure 4: Preparing and executing a process state transition.

tion and queried by another one.
Next we identify processes, proctype, and a proposi-

tional description of the finite state system with states and
state transitions as objects. The array dimensions of pro-
cess types, variables, and queues as well as queue capacity
are read from the PROMELA input file3. Variables in the
PROMELA specification are also to be found and declared
as objects. Proper handling of shared variables in PDDL is
more involved and considered later on.

At first we concentrate on communication via channels,
where channels are defined by their channel type and con-
tent configuration. All these objects are inferred in the
parser by instantiating the process identifierpid with re-
spect to the established array bounds in the PROMELA de-
scription. Figure 4 shows how we prepare and execute state
transitions. The Appendix provides the entire PDDL2.1
specification in the dining philosophers problem4. Action
activate-trans activates transitiont in processP if
in the current local state we have an option to performt
starting from local states1. Actionperform-trans trig-
gers the transitiont in processP to move froms1 to s2. It
queries flagok , which is then deleted.

3This is the only additional information, that is not present in
the finite state representation file. To avoid conflicts with pre-
compiler directives, we substitute alldefines beforehand with
the c-compiler command line option-E , which runs the pre-
compiler only.

4For a proper parsing process in MIPS brackets in transi-
tion descriptions were automatically substituted with underscores.
For Metric-FF more involved changes are necessary, reducing the
readibility of the generated code.

(:action queue-read
:parameters (?p - process ?t - transition

?q - queue ?v - variable)
:precondition

(and
(activate ?p ?t)
(settled)
(reads ?p ?q ?t)
(reads-val ?p ?t ?v)
(>= (queue-size ?q) 1)
(= (queue-head-msg ?q) (trans-mess ?t))

)
:effect

(and
(advance-head ?q)
(ok ?p ?t)
(not (activate ?p ?t))
(not (settled ?q))
(assign (value ?v) (head-value ?q))

)
)

Figure 5: Reading variables from a queue.

(:action increase-head
:parameters (?q - queue ?qt - queuetype

?qs1 ?qs2 - queue-state)
:precondition

(and
(queue-next ?qt ?qs1 ?qs2)
(is-a-queue ?q ?qt)
(queue-head ?q ?qs1)
(advance-head ?q)
(>= (queue-size ?q) 1)

)
:effect

(and
(settled)
(queue-head ?q ?qs2)
(not (queue-head ?q ?qs1))
(not (advance-head ?q))
(assign (queue-head-value ?q) (queue-value ?q ?qs2))
(assign (queue-head-msg ?q) (queue-msg ?q ?qs2))
(decrease (queue-size ?q) 1)

)
)

Figure 6: Increasing the head pointer to settle the queue.

This implies that for each transitiont in the automaton
there has to be an appropriate action that performs all nec-
essary changes according tot and that sets the according
flagok to true.

Queue organization is obtained with explicit head and tail
pointers. Figure 5 gives an action specification for read-
ing a variablev from the queueq in transition t query-
ing messagem, i.e. Q?m(v). The PDDL representation
of Q!m(v) is analogous. We can see that the state tran-
sition enabling flagok is set. The according queue up-
date actionincrease-head is shown in Figure 6. As
the name indicates it actualizes the head position and elimi-
nates thesettledflag, which is preconditioned in any queue
access action. To disallow actions to be activated twice,
before an action is performed we additionally precondition
activate-trans andperform-trans with the set-
tlement of the queues.



Metric-FF MIPS SPIN HSF-SPIN
p l e l e l s l e
3 6 7 6 7 18 10 14 17
4 8 13 8 9 54 45 18 22
5 10 21 10 11 66 51 22 27
6 12 31 12 13 302 287 26 32
7 14 43 14 15 330 309 30 37
8 16 57 16 17 1.362 1,341 34 42
9 18 73 18 19 1,466 1,440 38 47

10 20 91 20 21 9,422 9,396 42 52
11 22 111 22 23 9,382 9,349 46 46
12 24 133 24 25 9,998 43,699 50 62
13 26 157 26 27 9,998 722,014 54 67
14 28 183 28 29 o.m o.m 58 72
15 30 211 30 31 o.m o.m 62 58

Table 2: Results for finding the deadlock in then dining
philosophers problem.

Table 2 displays obtained exploration result for a slightly
simpler PDDL encoding of the dining philosopher prob-
lem 5. It shows the number of expanded/stored nodee/s
and counterexample path lengthl: o.m abbreviates out of
main memory for the two plannersMetric-FF and MIPS
and the two model checkersSPINandHSF-SPIN. For more
and refined experimental results, e.g. in the Optical Tele-
graph and Leader Election protocol, and for some objec-
tions to the fairness for such a comparison, the reader is
referred to (Edelkamp 2003a).

In the example heuristics are effective, sinceSPIN
searches to large depths until it finds an error. Its standard
DFS exploration order misses shallow errors. The subopti-
mal numbers of expansions in the model checkers are due
to graph contraction features, especially due to state merg-
ing. The plannerMetric-FF has a node expansion routine
about as fast as HSF-SPIN, which is very good, consider-
ing that the planner uses a set of propositional information,
computes an involved estimate and does not have any infor-
mation on the application domain.

Table 3 depicts a plan to the 4 philosopher problem with
transition activation in competition format as produced by
MIPS. It was found in 35 node expansions. The lead-
ing number show the start time the action has. As indi-
cated, MIPS does exploit parallelism. With durative ac-
tions, MIPS also allows to devise temporal and metric as-
pects to the protocol validation task.

In pure message passing domains like the example con-
sidered here, no communication via shared variables is nec-
essary. If variables are used, the parser has to generates ac-
tion schemas for variable conditioning and change. How-
ever, these operation appear to be more difficult than other

5Explicit activation of transitions was not implemented in this
case. State transition activation and execution were merged into
one PDDL action

0: (activate-trans philosopher-3 forks[-pid]!fork state-1 state-6) [1]
0: (activate-trans philosopher-2 forks[-pid]!fork state-1 state-6) [1]
0: (activate-trans philosopher-1 forks[-pid]!fork state-1 state-6) [1]
0: (activate-trans philosopher-0 forks[-pid]!fork state-1 state-6) [1]
1: (queue-write philosopher-3 forks[-pid]!fork forks[3]) [1]
2: (increase-queue-tail1 forks[3] queue-1 qs-0 qs-0) [1]
3: (queue-write philosopher-2 forks[-pid]!fork forks[2]) [1]
4: (increase-queue-tail1 forks[2] queue-1 qs-0 qs-0) [1]
5: (queue-write philosopher-1 forks[-pid]!fork forks[1]) [1]
6: (increase-queue-tail1 forks[1] queue-1 qs-0 qs-0) [1]
7: (queue-write philosopher-0 forks[-pid]!fork forks[0]) [1]
8: (increase-queue-tail1 forks[0] queue-1 qs-0 qs-0) [1]
9: (perform-trans philosopher-0 forks[-pid]!fork state-1 state-6) [1]
9: (perform-trans philosopher-1 forks[-pid]!fork state-1 state-6) [1]
9: (perform-trans philosopher-2 forks[-pid]!fork state-1 state-6) [1]
9: (perform-trans philosopher-3 forks[-pid]!fork state-1 state-6) [1]
10: (activate-trans philosopher-0 forks[-pid]?fork state-6 state-3) [1]
10: (activate-trans philosopher-1 forks[-pid]?fork state-6 state-3) [1]
10: (activate-trans philosopher-2 forks[-pid]?fork state-6 state-3) [1]
10: (activate-trans philosopher-3 forks[-pid]?fork state-6 state-3) [1]
11: (queue-read philosopher-3 forks[-pid]?fork forks[3]) [1]
12: (increase-queue-head forks[3] queue-1 qs-0 qs-0) [1]
13: (queue-read philosopher-2 forks[-pid]?fork forks[2]) [1]
14: (increase-queue-head forks[2] queue-1 qs-0 qs-0) [1]
15: (queue-read philosopher-1 forks[-pid]?fork forks[1]) [1]
16: (increase-queue-head forks[1] queue-1 qs-0 qs-0) [1]
17: (queue-read philosopher-0 forks[-pid]?fork forks[0]) [1]
18: (increase-queue-head forks[0] queue-1 qs-0 qs-0) [1]
19: (perform-trans philosopher-0 forks[-pid]?fork state-6 state-3) [1]
19: (perform-trans philosopher-1 forks[-pid]?fork state-6 state-3) [1]
19: (perform-trans philosopher-2 forks[-pid]?fork state-6 state-3) [1]
19: (perform-trans philosopher-3 forks[-pid]?fork state-6 state-3) [1]

Table 3: Counterexample for the four philosopher problem.

(:action V0=V1
:parameters

(?p - process ?t - transition ?v0 ?v1 - variable)
:precondition

(and
(activate ?p ?t)
(is-V0=V1 ?t ?v0 ?v1)
(inside ?p ?t ?v0)
(inside ?p ?t ?v1)

)
:effect

(and
(ok ?p ?t)
(not (activate ?p ?t))
(assign (value ?v0) (value ?v1))

)
)

Figure 7: Assigning variables.

operations, since they require both changes to the instance
and problem domain file.

To tame the number of actions, for each condition or as-
signment the parser generates a pattern structure. For exam-
ple, setting any variable to 1 corresponds to aV0=1 pattern.
The assignment of any variable to the content of another
corresponds to aV0=V1 pattern.

Inferred patterns generate actions and initial state pat-
terns. E.g. V0=V1 generates ais-V0=V1 predicate, to
be grounded in the initial state for each variable-to-variable
assignment according to the given transition and process
for the initial state. The inferred action declaration for
the domain file is shown in Table 7. Theinside pred-
icate avoids the definition of a fourth parameter in the
is-V0=V1 predicate.



Limits and Possibilities of PDDL Modeling
In this section we reflect the contributed work in form of
lessons to be learned with respect to current PDDL expres-
sivity. On the positive side, we highlight the following as-
pects.

1. We have seen a new approach to protocol validation
through compiling a selection of PROMELA specifica-
tions into PDDL, with first encouraging results for sim-
ple examples. The language capabilities in PDDL appear
to be general and flexible enough to model even larger
protocols. The intermediate representation in PDDL is
handy for designers, that prefer some representation of
communicating state machines instead of PROMELA
sources. These PDDL encodings may also be exploited
by other model checkers, like the one proposed by (Es-
parza, R̈omer, & Vogler 2002) that looks atunfoldings.

2. Bypassing model checkers through planning is an appar-
ent alternative to current options in (directed) protocol
validation. Metric planners like FF, LPG and MIPS seem
to exploit more information on the goals by inferring re-
fined estimates and including different forms of static in-
formation, such as goal ordering, landmark approxima-
tion, clustering of mutual exclusive atoms, state invari-
ances, and automated symmetry detection. On the other
hand, the exploration efficiency of model checkers due to
a refined implementation is a challenge for planners.

3. It is also true, that current PDDL2.1 planners, like LPG
and MIPS can handle certain forms real-time aspects
and concurrencies in plans. In PDDL2.1, actions can
be attached to time intervals. Subsequently, a plan is no
longer a sequence of action but a schedule of them.

4. PDDL 2.1 is capable of very general plan objective func-
tions, so that different plans can be ranked according to
their quality or execution cost. For software verifica-
tion such an option can be favorable in order to opti-
mize counterexamples based on parameters different to
the number of transitions that they contain.

5. PDDL protocol domain specifications are concise and
consist of a few state and queue enabling and commit-
ting actions, together with some variable update patterns.
Through the use of typed parameters it allow to detect
object transpositions.

6. The specification process is almost fully automated start-
ing from the process automata representation produced
by an existing model checker. So far, we neither changed
the model-checker to compile the current instance, nor
the planners’ internal design, proving their domain-
independent implementation.

7. By altering the link structure process communication in
PDDL can easily be adapted to other channel implemen-
tations.

8. The design patterns for specifying communication pro-
tocols in PDDL are very general and likely to transfer to
the validation of other model checking exploration tasks,
e.g to the verification of security protocols.

From a theoretical point, PDDL2.1 is Turing equiva-
lent (Helmert 2002), such that, in principle any software
verification problem can be modeled. However, these trans-
formations are not practical, so there are minor and major
restrictions of PDDL for software verification.

1. Some parsers of planners have problems with action and
object names in the full ASCII character set. Currently,
we substitute misinterpreted characters, by the cost of
problem readability. Extending PDDL parsers in plan-
ners is likely to be a small coding effort only.

2. Through the propositional representation of automata
and communication channels, PDDL specifications may
become a bit lengthy. Especially, the lack of object ar-
rays appear uncomfortable for the designer. Since this
issue can be viewed as syntactic sugar and since for most
planning benchmarks instance files are generated auto-
matically.

3. The work has turned a verification problem containing
non-deterministic choice into a deterministic planning
problem. However, it has neglected advanced aspects
in protocol modeling, such as rendezvous communica-
tion and atomic transitions. While the latter seems not
to be a severe restriction, the former has to be handled
with care, since rendezvous communication affects the
asynchronous behavior of the system. It is still open, if
(a)synchronicity can be easily exploited in PDDL.

4. We have not considered LTL and liveness properties yet.
In PDDL terminology this would correspond to tem-
porarily extended goals, a hot topic tackled by many re-
search groups. SPIN’s option is to explicitly model the
temporal requirements as an additional (never-claim) au-
tomaton.

5. Since the general exploration problem is undecidable,
PDDL exploration engines may not terminate at all.
SPIN, however, insists on finite domain variables in
PROMELA to maximally traverse a finite state space
graph. Finite variable domains for PDDL variables
such as a typebyte are not supported in PDDL. There
is some early work in fixing variable domains auto-
matically to improve planners’ performance (Edelkamp
2002a), but since this issue is as hard as planning it-
self, introducing finite domain variables can be helpful



for many planners. In fact, finite domain variables can
then be internally parsed down to propositional variables.

6. For failed assertions and domain invariance violations
the explicit statement of the goals causes no problem.
However, explicitly stating the deadlock situation ap-
pears as a further burden to the user. Of cause, this goal
condition can be derived from stopping criteria based on
the precondition of each action, but a PDDL language
extension at this point is preferable. This may also allow
the planners to alter their traversal politics.

7. Language extensions in PDDL should include domain
axioms, i.e. certain actions declaration that are triggered
by others and that are executed automatically to preserve
a valid system state. The work of (Tiebaux, Hoffmann,
& Nebel 2003) has come up with a formal semantics for
axioms, easily checkable conditions for them to be well-
defined, as well as a proof that they can not be compiled
away without significant costs. Integrating an explicit
treatment of axioms is trivial within a forward search (but
might be more complicated in other approaches). In the
protocol domain this form of modeling avoids to explic-
itly settle queues.

8. The transformation proposes to bypass the model
checker with a domain-independent action planner. A
fairer comparison would be to devise domain-dependent
pruning rules concurrently checked during the plan-
ning process. Examples of these kinds of planners
rules are TL-Plan (Bacchus & Kabanza 2000) and Tal-
Plan (Kvarnstr̈om, Doherty, & Haslum 2000).

9. Complex variable constructs like indirectly addressed
variables are not properly tackled yet. Variable patterns
derived so far seem to be too weak at this point. This
problem has been encountered by translating the eleva-
tor simulator of A. Biere6. We expect that the problem
can be circumvented by deflating the array index in the
precondition at the price of a neat domain description.

10. The fixed state representation of current planners cannot
yet model dynamic process creation. For general soft-
ware verification this problem is crucial, since almost all
state facets, e.g. to represent variables and threads refer
are dynamic. In PDDL dynamic domains call for object
creation and deletion in action effects. One would require
additional effects that are of the form(new (?a -
<name>) (:init <formula>*)) and (delete
?a) . The former construct generates a new object, the
latter construct deletes an existing one. These small
PDDL extensions are also desirable in several planning
benchmarks and real-world setting such as the ones at
NASA AMES. Another example is the Settlers domain,

6
www.inf.ethz.ch/personal/biere/ applets/elsim

where vehicles (carts, trains, ships) have to be created to
provide the necessary transport infrastructure.

Introducing dynamic domains will lead to substantial in-
ternal changes of planners and static analyzers. At least
for explicit state forward chaining planners, extendible
state representations can be made available. As it is de-
sirable to have planners that can deal with the new feature
one would like existing planners to solve transformed
benchmark domains without it.

Such a transformation to ordinary PDDL is possible, if
one has a superset of all possible objects to be generated
available. In general, however, finding such a superset is
as difficult as the plan existence problem, so that we can-
not expect a fully automated compiling scheme without
designer help.

We briefly sketch some transformation details to clar-
ify the semantics of the language extension. Through
this will not be formal construction, it indicates nec-
essary changes. The transformation uses some spe-
cial predicates as flags to govern the appropriate ob-
ject handling. Most importantly we include a predi-
cate (is-created ?a - <name>) in the domain
description, and precondition every object in every ac-
tion, if it is already created.

An action with the effect(new (?a - <name>)
(:init (<formula>*)) is transformed introduc-
ing an ordinary add-effect(is-created ?a) . Since
?a is not yet a parameter of the action the compilation
will include an extra parameter into the transformed ac-
tion.

For example consider actiongen-block that has no pa-
rameter and the only effect is(new (?a - block)
(:init (holding ?a))) . It will be transferred
to an actiongen-block’ (?a - block) having
(holding ?a) in the effect list. Certainly, the trans-
ferred action should require(not (is-created
?a)) to be included in the precondition list. Re-
call that by the observation of Gazen and Knoblock
negated preconditions can be easily compiled away,
as e.g. performed by planners like FF. Actually it
would only be necessary to include the additional
predicatenot-is-created into the precondition list
and to guarantee that in each action the predicates
not-is-created and is-created are comple-
ment to each other.

Similarly, for the delete pattern(delete ?a) the flag
(is-created ?a) has to be added to the delete list
of the according action.

Conclusions
PDDL models of communication protocols allow the first
immediate application of action planners to software model



checking domains. Hence, from a principal point of view,
we contributed and evaluated a new alternative to current
research efforts to model check protocols. Instead of intro-
ducing planning technology (like heuristic search) to model
checkers we propose to use PDDL specification directly,
even if some drawbacks to the expressivity are quite ob-
vious. The performance gain has still to be indicated in a
broader example set.

From a practical point of view we contributed a new
benchmark domain to evaluate current planning technology
and suggest to include the domain in the next planning com-
petition in the track for real-world application of determin-
istic (domain-independent or handcoded) planning.

The approach shows that protocol validation can be im-
plemented as a deterministic exploration problem. The non-
determinism in the input language PROMELA selected by
guards is available by the set of actions to be selected by the
planner. Through modeling state transitions as action, the
asynchronous behaviour is implicit. To keep specifications
small in current planners, in the proposed model we tried to
reduce the set of parameters.

The work targets the transfer between the state space ex-
ploration areas AI planning and model checking. It pro-
vides a practical study of the expressivity of different input
specifications, introduces concurrency and quality metrics
to counterexample traces, and compares search, pruning
and acceleration methods, e.g. therelaxed plan heuristic,
which comes along with anenforced hill climbingsearch
engine. Through the inferred intermediate planner input
format, we provide the basis for a new algorithmic aspects
to the exploration process, aim to further bridge the gap be-
tween the two research areas of model checking and action
planning. In the long term we expect planner and model
checking technology to merge.

Through the introduction of numbers and duration and by
the design of efficient domain-dependent and hand-coded
planners, the practical impact of planning technology has
greatly increased. Other rising application besides verifica-
tion are e.g. pipelining transportation, airport scheduling,
bio-informatics applications, circuit diagnosis, etc. Extend-
ing PDDL is an open project and subject to many discus-
sion. We contributed practical aspects in form of limits and
possibilities to current PDDL, by comparing its expressivity
with the requirements imposed by software model checking
problems. We suggest to include dynamic object creation as
a new language feature.

In future research we plan to look at Java and C++ ver-
ification as well as probabilistic model checking. For the
latter factored Markov Decision Processes (FMDPs) as a
welcome theoretical fundament. There is current work in
extend PDDL specification in order to attach probabilities
to action effects. By means of the contributed work, we
think of using a FMDP solver like SPUDD (Hoeyet al.

1999) and to transfer annotated PROMELA into an inter-
mediate probabilistic action planning description language.
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Appendix: PDDL2.1 Specification for the
Four Dining Philosopher Example as Inferred

by the Promela-To-PDDL Compiler
In the following we give the full PDDL2.1 specification
for the protocol domain as inferred by parsing the 4 din-
ing philosopher PROMELA input. Since this domain con-
tains no global variable handling, according source lines are
commented.

We start with the protocol domain file.
(define (domain protocol)

(:requirements :typing)
(:types process proctype state queue transition variable position

queuetype queue-state
- object)

(:predicates
(is-a-queue ?q - queue ?pt - queuetype)
(at-process ?p - process ?s - state)
(inside ?p - process ?t - transition ?v - variable)
(trans ?t - transition ?s1 ?s2 - state)
(writes ?p - process ?q - queue ?t - transition)
(reads ?p - process ?q - queue ?t - transition)
(writes-val ?p - process ?t - transition ?v - variable)
(reads-val ?p - process ?t - transition ?v - variable)
(ok ?p - process ?t - transition)
(activate ?p - process ?t - transition)
(queue-next ?qt - queuetype ?qs1 ?qs2 - queue-state)
(queue-head ?q - queue ?qs - queue-state)
(queue-tail ?q - queue ?qs - queue-state)
(advance-tail ?q - queue)
(advance-head ?q - queue)
(settled)

)
(:functions

(value ?v - variable)
(queue-size ?q - queue)
(queue-max ?qt - queuetype)
(queue-value ?q - queue ?p - queue-state)
(queue-msg ?q - queue ?p - queue-state)
(queue-head-value ?q - queue)
(queue-tail-value ?q - queue)
(queue-head-msg ?q - queue)
(queue-tail-msg ?q - queue)
(trans-msg ?t - transition)

)
(:action queue-read

:parameters (?p - process
?t - transition
?q - queue

;; ?v - variable
)
:precondition

(and
(activate ?p ?t)
(settled)
(reads ?p ?q ?t)

;; (reads-val ?p ?t ?v)
(= (queue-head-msg ?q) (trans-msg ?t))
(>= (queue-size ?q) 1))

:effect
(and

;; (assign (value ?v) (queue-head-value ?q))
(advance-head ?q)
(ok ?p ?t)
(not (activate ?p ?t))
(not (settled))

)
)
(:action queue-write

:parameters (?p - process
?t - transition

?q - queue
;; ?v - variable

)
:precondition

(and
(activate ?p ?t)
(settled)
(writes ?p ?q ?t)

;; (writes-val ?p ?t ?v)
)

:effect
(and

(ok ?p ?t)
(not (settled))
(not (activate ?p ?t))
(advance-tail ?q)
(assign (queue-tail-msg ?q) (trans-msg ?t))

;; (assign (queue-tail-value ?q) (value ?v))
)

)

;; due to queue-read

(:action increase-queue-head
:parameters (?q - queue ?qt - queuetype ?qs1 ?qs2 - queue-state)
:precondition

(and
(queue-next ?qt ?qs1 ?qs2)
(is-a-queue ?q ?qt)
(queue-head ?q ?qs1)
(>= (queue-size ?q) 1)
(advance-head ?q)

)
:effect

(and
(settled)
(queue-head ?q ?qs2)
(not (advance-head ?q))
(not (queue-head ?q ?qs1))

;; (assign (queue-head-value ?q) (queue-value ?q ?qs2))
(assign (queue-head-msg ?q) (queue-msg ?q ?qs2))
(decrease (queue-size ?q) 1)

)
)

;; due to queue-write

(:action increase-queue-tail1
:parameters (?q - queue ?qt - queuetype ?qs1 ?qs2 - queue-state)
:precondition

(and
(queue-next ?qt ?qs1 ?qs2)
(is-a-queue ?q ?qt)
(queue-tail ?q ?qs1)
(advance-tail ?q)
(< (queue-size ?q) (queue-max ?qt))
(= (queue-size ?q) 0))

:effect
(and

(settled)
(not (advance-tail ?q))
(queue-tail ?q ?qs2)
(not (queue-tail ?q ?qs1))

;; (assign (queue-value ?q ?qs2) (queue-tail-value ?q))
(assign (queue-msg ?q ?qs2) (queue-tail-msg ?q) )

;; (assign (queue-head-value ?q) (queue-tail-value ?q))
(assign (queue-head-msg ?q) (queue-tail-msg ?q) )
(increase (queue-size ?q) 1)

)
)
(:action increase-queue-tail2

:parameters (?q - queue ?qt - queuetype ?qs1 ?qs2 - queue-state)
:precondition

(and
(queue-next ?qt ?qs1 ?qs2)
(is-a-queue ?q ?qt)
(queue-tail ?q ?qs1)
(advance-tail ?q)
(< (queue-size ?q) (queue-max ?qt))
(> (queue-size ?q) 0)

)
:effect

(and
(settled)
(not (advance-tail ?q))
(queue-tail ?q ?qs2)
(not (queue-tail ?q ?qs1))

;; (assign (queue-value ?q ?qs2) (queue-tail-value ?q))
(assign (queue-msg ?q ?qs2) (queue-tail-msg ?q))
(increase (queue-size ?q) 1)

)



)

(:action perform-trans
:parameters (?p - process

?t - transition ?s1 ?s2 - state
)
:precondition

(and
(settled)
(trans ?t ?s1 ?s2)
(ok ?p ?t)
(at-process ?p ?s1)

)
:effect

(and
(at-process ?p ?s2)
(not (at-process ?p ?s1))
(not (ok ?p ?t))

)
)
(:action activate-trans

:parameters (?p - process
?t - transition ?s1 ?s2 - state

)
:precondition

(and
(settled)
(trans ?t ?s1 ?s2)
(at-process ?p ?s1)

)
:effect

(and
(activate ?p ?t)

)
)
)

Next we give the problem specific file.
(define (problem phil4.fsm)
(:domain protocol)
(:objects

philosopher-0
philosopher-1
philosopher-2
philosopher-3

- process
forks[0]
forks[1]
forks[2]
forks[3]

- queue
queue-1

- queuetype
qs-0

- queue-state
philosopher

- proctype
state-1
state-6
state-3
state-4
state-5

- state
forks[-pid]!fork
forks[-pid]?fork
forks[__-pid+1_%4_]?fork
forks[__-pid+1_%4_]!fork

- transition
)
(:init

(queue-next queue-1 qs-0 qs-0)
(= (queue-max queue-1) 1)
(at-process philosopher-0 state-1)
(at-process philosopher-1 state-1)
(at-process philosopher-2 state-1)
(at-process philosopher-3 state-1)
(is-a-queue forks[0] queue-1)
(settled)
(queue-head forks[0] qs-0)
(queue-tail forks[0] qs-0)
(= (queue-head-msg forks[0]) -1)
(= (queue-size forks[0]) 0)
(is-a-queue forks[1] queue-1)
(settled)
(queue-head forks[1] qs-0)
(queue-tail forks[1] qs-0)
(= (queue-head-msg forks[1]) -1)
(= (queue-size forks[1]) 0)
(is-a-queue forks[2] queue-1)
(settled)

(queue-head forks[2] qs-0)
(queue-tail forks[2] qs-0)
(= (queue-head-msg forks[2]) -1)
(= (queue-size forks[2]) 0)
(is-a-queue forks[3] queue-1)
(settled)
(queue-head forks[3] qs-0)
(queue-tail forks[3] qs-0)
(= (queue-head-msg forks[3]) -1)
(= (queue-size forks[3]) 0)
(writes philosopher-0 forks[0] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(reads philosopher-0 forks[0] forks[-pid]?fork)
(= (trans-msg forks[-pid]?fork) 0) ;; fork
(reads philosopher-0 forks[1] forks[__-pid+1_%4_]?fork)
(= (trans-msg forks[__-pid+1_%4_]?fork) 0) ;; fork
(writes philosopher-0 forks[0] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(writes philosopher-0 forks[1] forks[__-pid+1_%4_]!fork)
(= (trans-msg forks[__-pid+1_%4_]!fork) 0) ;; fork
(writes philosopher-1 forks[1] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(reads philosopher-1 forks[1] forks[-pid]?fork)
(= (trans-msg forks[-pid]?fork) 0) ;; fork
(reads philosopher-1 forks[2] forks[__-pid+1_%4_]?fork)
(= (trans-msg forks[__-pid+1_%4_]?fork) 0) ;; fork
(writes philosopher-1 forks[1] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(writes philosopher-1 forks[2] forks[__-pid+1_%4_]!fork)
(= (trans-msg forks[__-pid+1_%4_]!fork) 0) ;; fork
(writes philosopher-2 forks[2] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(reads philosopher-2 forks[2] forks[-pid]?fork)
(= (trans-msg forks[-pid]?fork) 0) ;; fork
(reads philosopher-2 forks[3] forks[__-pid+1_%4_]?fork)
(= (trans-msg forks[__-pid+1_%4_]?fork) 0) ;; fork
(writes philosopher-2 forks[2] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(writes philosopher-2 forks[3] forks[__-pid+1_%4_]!fork)
(= (trans-msg forks[__-pid+1_%4_]!fork) 0) ;; fork
(writes philosopher-3 forks[3] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(reads philosopher-3 forks[3] forks[-pid]?fork)
(= (trans-msg forks[-pid]?fork) 0) ;; fork
(reads philosopher-3 forks[0] forks[__-pid+1_%4_]?fork)
(= (trans-msg forks[__-pid+1_%4_]?fork) 0) ;; fork
(writes philosopher-3 forks[3] forks[-pid]!fork)
(= (trans-msg forks[-pid]!fork) 0) ;; fork
(writes philosopher-3 forks[0] forks[__-pid+1_%4_]!fork)
(= (trans-msg forks[__-pid+1_%4_]!fork) 0) ;; fork
(trans forks[-pid]!fork state-1 state-6)
(trans forks[-pid]?fork state-6 state-3)
(trans forks[__-pid+1_%4_]?fork state-3 state-4)
(trans forks[-pid]!fork state-4 state-5)
(trans forks[__-pid+1_%4_]!fork state-5 state-6)

)
(:goal

(and
(at-process philosopher-0 state-3)
(at-process philosopher-1 state-3)
(at-process philosopher-2 state-3)
(at-process philosopher-3 state-3)
(settled)

)
)
(:metric minimize total-time) )


