
VAL ’s Progress:
The Automatic Validation Tool for PDDL2.1used in

The International Planning Competition

Richard Howey and Derek Long
University of Durham, UK

r.a.j.howey@durham.ac.uk d.p.long@durham.ac.uk

Abstract

A key element in the success of the 3rd International Plan-
ning Competition was the implementation of an automatic
plan validator forPDDL2.1 ,VAL . Over 5000 plans were gen-
erated by entrants, so it was clearly essential for evaluation of
the results alone. VAL was a vital tool in the development pro-
cess of competitors to develop their planners. This document
describes the evolution ofVAL to handle more complex types
of plans for competitions of the future. In the 3rd IPC the
handling of numeric resources was limited in that the values
could only be updated discretely. We report on the progress
made with extendingVAL so that numeric resources can be
updated continuously. Also a new reporting option in LATEX
has been implemented including a Gantt chart and graphs of
the numerical resources – this greatly increases the useful-
ness ofVAL as a tool for the development of planners using
PDDL2.1.

1 Introduction
The 3rd International Planning Competition (Fox, Long, &
Committee 2002) was a great success and a cornerstone to
this success was the initial definition of a semantics for the
language used in the competition,PDDL2.1. This conveyed
a general understanding of the semantics of the domains de-
fined using this language and therefore, most importantly, a
general understanding of what constitutes a valid plan. With
this consensus on what constitutes a valid plan it was pos-
sible to implement an automatic plan validator,VAL . Given
the domain, problem and plan a definitive answer to whether
the plan is valid could be returned, furthermore if the plan
fails details of why it failed could be returned. The 3rd IPC
produced in excess of 5000 plans, so the availability of an
automatic plan checker was essential for evaluation of re-
sults alone. However the importance ofVAL stretches fur-
ther than just a competition results evaluation tool – it con-
veys what is a valid plan inPDDL2.1 to anyone developing a
planner using this language. It is therefore an invaluable aid
to the planning community in their development of planners
usingPDDL2.1 for the competition, or any other purpose.

The 3rd IPC only used the discontinuous change of
PDDL2.1 which made temporal planning one of the fo-
cal objectives, and a number of planners achieved success
in handling quite complex metric temporal planning be-
haviour, includingMIPS (Edelkamp & Helmert 2000) and

LPG (Gerevini & Serina 2002). Although the introduction
of metric temporal reasoning was a considerable challenge,
there still remains important challenges. In particular the
domains used in the competition were such that all change
was modelled using discrete effects. There are features of
some domains that cannot be accurately modelled with dis-
crete effects, a more expressive fragment ofPDDL2.1 allows
the use of continuous effects. This document reports on the
progress made in implementing an extension toVAL to in-
clude continuous effects, the problems faced in doing this
and the semantics of continuous effects inPDDL2.1.

The challenges in validating a plan with continuous ef-
fects can be seen to consist of a number of factors: lin-
ear effects, non-linear effects, invariants without disjunction
and invariants with disjunction. These challenges are ad-
dressed in more detail later. Validating plans with contin-
uous effects in a general context has also been considered.
Domains that consist solely of effects that are linear can be
validated byVAL provided that any expressions appearing in
invariant comparisons are polynomial (in time). Non-linear
effects present many tougher challenges, nethertheless con-
siderable progress has been made towards validating plans
with non-linear effects. Non-linear Effects that are defined
as a polynomial function of time can be handled byVAL ,
again provided that any expressions appearing in invariant
comparisons are also polynomial in time.

A new feature toVAL is the option of producing a LATEX
report document as output of validating a plan (or plans).
This report greatly enhances the communication of the re-
sults from VAL versus simple usage from the command
prompt. Of course if the only goal is to simply check a
plan and get ayes or noanswer then basic usage ofVAL
is appropriate. However the report brings the ability to be
able to dissect a plans validation, showing the original plan,
the impliedplan to validate, and a blow by blow account of
the validation. The report also includes a Gantt chart which
clearly highlights a plans temporal structure showing con-
current activity and dependency. This may make visible any
improvements that could be made to a plan or any flaws in
the overall planning strategy. Another feature to the report
are graphs of the numerical quantities that change through-
out the execution of a plan. These show the effects of con-
tinuous change, discrete updates, concurrent activity and the
interaction of numerical quantities.

2 Actions with Continuous Effects
We assume that time is continuous and real-valued. A nu-
merical quantity that can be changed, a function inPDDL, is
called aprimitive numerical expression(PNE1). These PNEs
can have continuous change initiated with discrete changes
made to the values of their (time) derivatives. Only a dura-
tive action may affect the derivative of a PNE, the discrete
effect to the derivative starts at the beginning of the durative
action and ends at the end of the durative action. The contin-
uous change made by a durative action thus affects a finite
interval within the plan structure. The use of derivatives for
continuous effects can be seen as instantaneous effects, de-
spite the fact that they lead to continuous change.

In PDDL2.1 any invariant condition must hold over the
duration of a durative action. In the absence of continuous
change the invariant can be checked by evaluating a set of
predicates between the start and end of the durative action.
However if an invariant condition depends on any PNEs that
are changing continuously it is not possible to guarantee that
an invariant holds by a single evaluation of predicates. This
is discussed further in section 7.

A continuous effect can only affect metric quantities: it is
not possible to change a propositional fluent continuously.
A durative action that has a continuous effect on a PNE
changes the fluent so that the values taken once the continu-
ous change is activated are described by a continuous func-
tion of time. That is ifv is changing continuously on an in-
terval[t1, t2] then for eacht′ ∈ [t1, t2] the limit limt→t′v(t)
exists and is equal tov(t′). It is possible for other actions
to affect a PNE during the interval over which a continu-
ous effect is changing the same expression. In this case, the
compound continuous effect will be decomposed into seg-
ments of continuous behaviour, punctuated by points of dis-
crete change. These points can be either discrete changes in
the value of the expression itself, where an action assigns di-
rectly to the PNE, so that the values describe a discontinuous
behaviour, or can be discrete changes in the rate of change so
that the values describe a continuous, but non-differentiable
behaviour. The latter case occurs when an action makes an
(instantaneous) assignment to the derivative of a PNE.

3 Syntax of Continuous Effects
A continuous effect of a durative action is written in the fol-
lowing style:

(increase (fuel-level ?v) (* #t
(refuel-rate ?p)))

where#t represents, in some sense, the time over which the
effect has been active. However, the whole expression must
be interpreted as having a special significance that cannot
be accurately captured in terms of an instantaneous effect:
instead, the expression should be thought of as identifying
a rate of change for the primitive numeric expression on its
left. In this example the fuel level ofv is continuously in-
creased at the refuel rate of the fuel pumpp. If the fuel pump
delivers fuel at a constant rate then the fuel level at any point

1For historical reasons a PNE is called a FE (functional expres-
sion) in the code.

during refueling is given by the time since refueling started,
#t, multiplied by the refuel rate. If the refuel rate is itself
changing then the behaviour is more complex, described by
a differential equation. It might seem more natural to ex-
press this effect as an assertion of the form

d

dt
(fuel-level ?v)= (refuel-rate ?p)

but this would be inappropriate since there might be addi-
tional actions that affect the value of the fuel level continu-
ously and concurrently. While it would not be inconsistent
for each of those actions to assert that they had the effect of
increasing fuel level at some rate, it would be inconsistent
for any of them to assert a specific value for the overall rate
of change of the fuel level.

Formally continuous effects are written as follows:
(<assign-op-t> <f-head> <f-exp-t>)

where

<assign-op-t> ::= increase
<assign-op-t> ::= decrease
<f-exp-t> ::= (* <f-exp> #t)
<f-exp-t> ::= (* #t <f-exp>)
<f-exp-t> ::= #t

and<f-head> is a PNE and<f-exp> is any expression (for
details seePDDL2.1 (Fox & Long 2002)).

4 Semantics of Continuous Effects
A detailed description of the semanticswithout continuous
effects of PDDL2.1 can be found in (Fox & Long 2002).
The semantics is developed in terms of a reasonably famil-
iar finite-state-machine-transition model, complicated only
by the extension of the classical logical states (represented
as sets of literals that each hold true in a state) to include
a valuation for PNEs (or, in other words, an assignment of
numeric values to the PNEs that exist for the problem). All
transitions are instantaneous, just as in a classical seman-
tic model for STRIPS-like languages, although actions that
bear the same timestamp are required to be pairwise non-
mutex and then their effects are applied simultaneously. Du-
rations are simply handled as numeric constraints (in fact,
the duration constraints of the durative actions themselves)
to be tested in the appropriate state. Thus, durative actions
are given semantics by translation into instantaneous actions
corresponding to the start and end points of the durative ac-
tion.

Invariants are handled using special actions (again, instan-
taneous) that are inserted, between other pairs of time points
at which there are any actions, between the start and end
points of the durative action to which they apply. Since with-
out continuous effects, all change is constrained to be dis-
crete and to occur at an end point of an action, it is clearly
sufficient to check invariants just once between every pair
of points at which each invariant might have been affected.
We call all the time points at which instantaneous actions
occurhappenings, including those points corresponding to
end points of durative actions.

A formal semantics has been developed to include
continuous effects based on the semantics mentioned

Invariant Check

Invariant Check

Time

Start

Time

Start

Some Action

f

Time
0 T

End

Continuous Update

End

Continuous Update

Invariant Check

Continuous Update2)

1)

3)

Figure 1: Durative action with continuous effects. Graph
shows the values of a PNE,f , which is changing continu-
ously during the execution of the durative action.

above (Howey & Long 2003a). We do not attempt to give
a formal semantics in this section due to limited space. The
introduction of continuous change creates two further com-
plications:

• Continuous changes can interact with one another

• Invariant conditions may depend on values that are con-
tinuously changing

The key extension to the discrete temporal model is that in-
teracting processes are described by systems of differential
equations, whose effects can be resolved at the conclusion
of each interval over which they act uninterrupted. Invari-
ants can be checked by considering the functions describing
the change in variables over the same intervals. This is il-
lustrated in figure 1. In (1) we show how the interval of a
durative action effecting continuous change can be handled
by updating the continuously changing variables discretely
at the end of the interval and checking any invariants at this
point (respecting the continuous change). In (2) we show
that if another action punctuates the interval then the evalua-
tion of continuous effects and invariant checks are managed
at each point of change. Part (3) illustrates how discrete af-
fects can arise, due to parallel activity during the intervals,
breaking the continuous change into piece-wise continuous
components.

Implementation of Semantics
Given the original plan of timestamped durative actions
(with a given duration) and non-durative actionsVAL maps
them into a sequence of happenings. Each happening is la-
belled with a time value and contains a list of actions, each
action is either a non-durative action or an end point of a du-
rative action. (Two actions with timestamps within a certain
tolerance are considered to occur at the same time). For this
list of actions to be executed simultaneously some restric-
tions must be met in order that the result is clearly defined.

This is achieved by ensuring that the actions are commu-
tative, that is any order of execution of the actions always
yields the same result. This constraint implies that propo-
sitions and PNEs are treated like shared memory in multi-
processing operating systems, with actions analogous to
separate processes. An action precondition demandsread-
accessto all of the atomic propositions and PNEs it includes,
while action effects demandwrite-accessto all the atomic
propositions and PNEs they refer to. VAL refers to an ac-
tion havingownershipof an atomic proposition or PNE for
deletion or assignment etc. Each action in turn is desig-
nated with ownerships for the appropriate atomic proposi-
tions and PNEs, these are then compared with existing own-
erships of other actions for any conflicts. For example an
atomic proposition can support any number of precondition
ownerships and PNEs can support any number of additive
updates (since they commute, subject to minor restrictions).
However one action having a precondition ownership of an
atomic proposition and another having a deletion ownership
is not acceptable, since the order in which the actions can be
applied conflicts. (If two actions conflict in their ownership
they are mutex).

VAL has an iterator that progresses through the happen-
ings that are taken directly from the durative action end
points and the non-durative actions. These happenings are
referred to asregular happenings. On an interval of con-
tinuous activity the iterator also returns two other types of
happenings before each regular happening, these happen-
ings have the same timestamp as the regular happenings.
(This is illustrated in figure 1 part (2)). The first is acon-
tinuoushappening in which the functions of time describing
the continuously changing PNEs are calculated, see section
6. Crucially the continuous effects are all considered to-
gether, not on an action by action basis since continuous
effects may interact with one another. These functions are
then used to update the values of the PNEs correctly at this
time point. The second happening is aninvarianthappening
in which all the active invariants are checked on the open
interval from the last regular happening with respect to any
continuously changing PNEs, see section 7. This happen-
ing has no effects and only verifies invariant conditions so
either the conditions are true and the plan continues, or an
invariant condition fails and the plan fails. This happening
may also require the functions of time describing the contin-
uously changing PNEs, and so they are only calculated once
at this time.

5 Implementation of Plan Verification
In figure 3, we show the dimensions that affect the prob-
lem of validating a plan with continuous effects and sum-
marize the interactions between them. The first dimension
is the complexity of the functions describing the continu-
ous change. These range through constant (no continuous
change), linear, polynomial and other (which includes expo-
nential functions and transcendental functions). The second
and third dimensions are defined by the invariant structure,
with complexity affected by the structure of functions used
in the comparisons and by the existence (or not) of disjunc-
tions. In the following sections we consider this categoriza-

Invariant function order (in PNEs): None Linear Polynomial
Continuous Effects
None The invariant collapses to a boolean value in these cases.
Linear 1 2 3
Polynomial 1 3 3
Other Functions 4 For all entries in this row, see note 5.

1. These cases involve solving simple differential equations and evaluating the results at a point.

2. This case can be resolved by checking the condition at the end points of the interval(0, T) (this follows from linearity).

3. These cases reduce to checking whether a polynomial has roots within the interval(0, T).

4. This case can be handled by numeric integration, since the roots are not required to check invariant comparisons.

5. All of these cases involve solving differential equations which could yield solutions in exponential, logarithmic, trigonometric or hyperbolic
functions. These introduce problems that cannot be guaranteed to be solved.

Figure 3: Interactions between continuous effects and forms of invariants.

Time Action

1: (generate generator) [100]
20: (refuel generator tank) [10]

Time Happening

1: (generate generator)- start

20: Invariant for (generate generator)
20: Update of continuously changing Primitive Numerical Expressions

20: (refuel generator tank)- start

30: Invariant for (generate generator)
Invariant for (refuel generator tank)

30: Update of continuously changing Primitive Numerical Expressions

30: (refuel generator tank)- end

101: Invariant for (generate generator)
101: Update of continuously changing Primitive Numerical Expressions

101: (generate generator)- end

Figure 2: Durative actions in a plan and the corresponding
simple actions to be validated.

tion and the interactions between them in more detail.

6 Interacting Continuous Effects
There may be a number of continuous effects active at one
time each of which additively modifies the derivative of a
PNE. If a PNE has its derivative modified more than once
then the derivative is given by the sum of the contributions.
The rate of change of a PNE may also depend on the value of
other PNEs which may themselves be continuously chang-
ing. The values of all the changing PNEs are thus given by
a system of differential equations:

dfi
dt

= gi(f1, f2, · · · , fn) i ∈ {1, 2, · · · , n},

where thefi are the PNEs and thegi are some functions
depending on the set of continuously changing PNEs. PNEs
that are not changing continuously are treated as constants.
For example consider the following continuous effects

increase (distance ?c) (* #t (speed ?c))
increase (speed ?c) (* #t (acceln ?c))

which describe the motion of a car driving. The rate of
change of the PNE for the distance of the car is given by
the PNE for the speed of the car. The PNE for the speed
of the car is in turn given by the PNE for the acceleration
of the car. To solve these differential equations to give the
functions of time describing the motion of the car we must
firstly determine the acceleration, then the speed, and lastly
the distance of the car. (See figures 8, 9 and 10 for graphs of
these effects).

A PNE can change as a linear function of time, a poly-
nomial function of time or even a more complex function of
time, due to more complex dependencies arising in the ex-
pression on the right-hand-side of the differential equation
governing its evolution. If the dependencies of the PNEs
are such that there are no loops, that is the rate of change
of any PNE does not depend on itself either directly or indi-
rectly, then it can be shown that the PNEs will be described
by polynomials int, the time over which the action is exe-
cuting.

Determination of the structure of the dependency sets can
be carried out automatically, using syntactic analysis of the
expression parse trees. A graph is constructed using PNEs
as vertices and with directed edges between the expressions
on the left of continuous updates and those on the right of
the same expression. If this graph is acyclic then the dif-
ferential equations can all be solved with polynomials. The
only limitation is that this dependency analysis carried out
purely syntactically can be conservative: it can be the case
that dependencies actually simplify away if expressions can
be symbolically manipulated to cancel terms. Since this kind
of manipulation is non-trivial, we must assume that the de-
pendencies discovered by syntactic analysis could be more
restrictive than the true dependencies.

The complexity of the differential equations that can be
expressed far exceeds the practical possibility of solving
them analytically and even numerically. It is therefore nec-
essary to impose certain restrictions on the differential equa-
tions to guarantee that they can be solved.

7 Invariants
Continuous effects have their most significant effect on the
verification of plans when they interact with invariants. An
invariant condition must be evaluated on an interval by
checking that the continuously changing PNEs that appear
within it do not assume values that lead to a violation of the
invariant.

One-Clause Invariants
An invariant comparison containing PNEs that are contin-
uously changing can always be expressed as a function of
time, t, that must be greater than zero (or perhaps greater
then or equal to zero. If equality is used then the difference
between the left hand side and the right hand side cannot
vary in time for the invariant to hold). For example

t2 + 2t+ 2 > 0 for t ∈ (0, 5)

may be an invariant condition to check. If the invariant ex-
pression is linear in time we can simply evaluate the expres-
sion at the end points of the interval to confirm the condition
holds. However checking an invariant condition with a non-
linear expression in time it is no longer sufficient to check
the condition at end points only. An invariant comparison
F (t) > 0 on (0, T), whereF is some continuous function
in time, t, can be checked by one of the following methods:

1. Check thatF (0) ≥ 0 andF (T) ≥ 0 and also check that
the value at any stationary points in(0, T) is greater than
zero.

2. Check thatF (0) ≥ 0 andF (T) ≥ 0 and also check to see
if any roots exist in(0, T). (If the inequality is non-strict
then care is needed in case there is a stationary point).

Method 2 is the method chosen to check non-linear invari-
ants inVAL . The key to the problem of checking invariants
that are comparisons with non-linear expressions int is one
of finding the roots of a non-linear function. This problem
is, in general, non-trivial, even in the case of polynomials.
There are many algorithms to find the roots of equations but
we need to be sure of finding all the roots in a given interval
in every possible case. It is therefore necessary to impose
certain restrictions on the invariants that may be expressed
to guarantee that they may be verified on a given interval.

We are initially only considering invariant comparisons
which depend on continuously changing PNEs that are given
by polynomials int. For one-clause invariant comparisons
which are given by an inequality that is strict we are in
fact only interested in the existence of real roots on a given
open interval. This can be determined by methods based on
Sturm’s Theorem or Descartes’ Rule of Signs Theorem, with
the provision that there are no repeated roots. Fortunately for
any given polynomial we can be obtain another polynomial
with the same roots but without any repeated roots. This is
achieved by dividing the polynomial by the greatest com-
mon divisor of itself and its derivative. To find the greatest
common divisor of two polynomials the Euclidean (a.k.a.
Euclid’s or divisional) algorithm can be used, although the
accuracy of the coefficients must be handled carefully to
avoid any spurious results due to rounding in the calcula-
tions.

��
��
��
��
��
��
��
�

-t

6
h2

h1

f

0 t0 T

Figure 4: Example ofh1, h2 andf . If f is required to be
aboveh2 or below h1 across(0, T), then the value att0
breaks the constraint.

For one-clausenon-strict invariant comparisons to deter-
mine the existence of real roots on a given interval alone is
not sufficient to check the invariant – since we may have a
repeated root so that the invariant condition is not broken.
Fortunately the invariant can be checked by applying an al-
gorithm based on Sturm’s Theorem or Descartes’ Rule of
Signs Theorem to obtain a set of intervals that isolate the
roots (if there are any). Then checking the sign of the poly-
nomial between the roots will confirm that the invariant has
not been violated. Therefore the size of the intervals is not
important provided that they do not overlap.

Invariants with Disjunctions
LetA andB be two atoms that depend on time then consider
the two conditions

A(t) ∨B(t) for all t ∈ (0, T), (1)

(A(t) for all t ∈ (0, T)) ∨ (B(t) for all t ∈ (0, T)) . (2)

It could be the case thatA(t) is only satisfied on(0, 3
4T]

andB(t) on [1
4T, T) so that condition (1) is satisfied but

condition (2) is not. Clearly the two interpretations are not
equivalent. Suppose a durative action continuously updates
a PNE,f , and there is a concurrent action (possibly the same
action) with an invariant condition of the form:

f(t) < h1(t) ∧ f(t) > h2(t) for all t ∈ (0, T),

whereh1 andh2 are some functions that may depend on
other functional expressions. The condition can then be
checked by checking each comparison separately. However
suppose the condition is of the form:

f(t) < h1(t) ∨ f(t) > h2(t) for all t ∈ (0, T),

then each comparison cannot be considered separately.
In the simple case whereh1 andh2 are constants andf

is linear we can no longer simply check the end points of
h1 − f andf − h2 to be greater than zero. This is because
we could have(h1 − f)(0) > 0 and (f − h2)(T) > 0
which satisfies the condition at0 and T but there could
exist a pointt0 ∈ (0, T) such that(h1 − f)(t0) < 0 and
(f − h2)(t0) < 0 (see figure 4).

In general an invariant condition can be considered as
a proposition in DNF that must hold over an interval, say

(0, T). To confirm the invariant, we must then find a set of
intervals,C, covering(0, T), such that a disjunct is satisfied
in each interval inC. This is simplified if it is possible to
find all the roots of all the continuous functions involved,
since these points can be used as the end points of the sub-
intervals forming the cover. We are initially only consider-
ing polynomials and to find the real roots efficiently, infalli-
bly and to within a degree of accuracy we can use an algo-
rithm based on Descartes’ Rule of Signs Theorem (Johnson
& Krandick 1997). We have recently written an implementa-
tion of a polynomial root finder based on these theorems, and
in particular algorithms based on research at INRIA (Rouil-
lier & Zimmermann 2001). Using this approach means that
our validation of plans cannot be more accurate than the de-
gree of precision used in the solver. However in practice,
all numerical testing, even for linear functions, is subject to
the degree of precision supported by our machines (always
finite), so the problem of plan verification must always be
qualified by an observation of the limitation on the accuracy
with which numeric constraints can be checked. Therefore,
entries labelled 3 in figure 3 are solvable.

More complex non-linear functions remain difficult: it is
not possible to guarantee that there is an algorithm to con-
firm that an arbitrary non-linear function does or does not
have roots in a specified range. This makes checking all sit-
uations labelled 5 in the table in figure 3 problematic.

As an example of an invariant with disjunction consider
the following:

(t2 − 9t+ 14 ≥ 0) ∨ ((t− 1 > 0) ∧ (−t+ 8 ≥ 0))

for t in (0, 10). We must find the values oft in (0, 10) each
disjunct is satisfied on then take the union of the two and see
if the result covers(0, 10), which implies the result is in fact
equal to(0, 10). The first disjunct,(t2−9t+14 ≥ 0), is sat-
isfied for values oft in (0, 2]∪[7, 10). The second disjunct is
not so straightforward, the condition(t− 1 > 0) is satisfied
on (1, 10) and(−t+ 8 ≥ 0) is satisfied on(0, 8] then taking
the intersection of the two we have the disjunct being sat-
isfied for values oft in (1, 8]. Now taking the union of the
values that the two disjuncts are satisfied on gives(0, 10)
which indeed covers(0, 10) showing that the invariant con-
dition holds.

Two aspects of the syntactic form of invariants affect the
complexity of checking them: one is the complexity of the
functions that appear in the invariant proposition itself and
the other is whether or not there is more than one disjunct in
the proposition.

8 Validation Example: Tanks of Water
To demonstrate some of the capabilities ofVAL it is useful to
consider an example. So let us consider the problem of fill-
ing a bucket of water as quickly as possible from two tanks
of water. Firstly we must model the problem sufficiently ac-
curately. The rate of the flow of the water out of the bottom
of a tank is governed by Torricelli’s Law:Water in an open
tank will flow out through a small hole in the bottom with
the velocity it would acquire in falling freely from the water
level to the hole. The volume of water,V , in a tank with the

tap left on is then shown to be given by

V = (−kt+
√
U)

2
t ∈

[
0,
√
U

k

]
,

wherek is the flow constant (which depends on gravity, the
size of the tap and the cross section of the tank) andU is the
initial volume of water in the tank. This then gives the rate
at which the water level of the tank is changing as

dV

dt
= 2k(kt−

√
U) t ∈

[
0,
√
U

k

]
.

At time 0 the tank has volumeU and starts to drain then by
time

√
U
k the tank is empty so that these equations are only

valid for time values,t, in [0,
√
U
k]. A possible encoding in

PDDL2.1 is given as follows:
(define (domain tank-domain)
(:requirements :fluents :durative-actions

:duration-inequalities)
(:predicates (draining ?t) (filling ?b))
(:functions (volume ?t) (drain-time ?t)

(flow-constant ?t) (capacity ?b)
(sqrtvolinit ?t) (sqrtvol ?t))

(:durative-action fill-bucket
:parameters (?b ?t)
:duration (<= ?duration

(/ (sqrtvolinit ?t) (flow-constant ?t)))
:condition (and

(over all (<= (volume ?b) (capacity ?b)))
(at start (not (draining ?t)))
(at start (not (filling ?b))))

:effect (and
(at start (assign (drain-time ?t) 0))
(at start (assign (sqrtvol ?t)

(sqrtvolinit ?t)))
(at start (draining ?t))
(at start (filling ?b)
(increase (drain-time ?t) (* #t 1))
(decrease (volume ?t) (* #t

(* (* 2 (flow-constant ?t))
(- (sqrtvolinit ?t)

(* (flow-constant ?t)
(drain-time ?t))))))

(decrease (sqrtvol ?t)
(* #t (flow-constant ?t)))

(increase (volume ?b) (* #t
(* (* 2 (flow-constant ?t))

(- (sqrtvolinit ?t)
(* (flow-constant ?t)

(drain-time ?t))))))
(at end (assign (sqrtvolinit ?t)

(sqrtvol ?t)))
(at end (not (draining ?t)))
(at end (not (filling ?b))))))

The domain consists of one durative action which models
the filling of one bucket from one tank for a fixed time, along
with the condition that the bucket must not overflow. The
initial square root of the volume of the tank,sqrtvolinit ,
is required for the equation describing the flow of water out
of the tank. This must be given in the first instance since

PDDL2.1 does not handle the use of square roots (yet?). The
square root of the volume of the tank,sqrtvol , can then be
tracked by a linear function of time which then can be used
to supply the initial square root of the volume of the tank in
the case that the tank is partially drained and then drained
later.
Now consider the problem of filling one bucket from two
tanks defined inPDDL2.1 as follows:

(define (problem tank-problem)
(:domain tank-domain)
(:objects tank1 tank2 bucket)
(:init (= (volume bucket) 0)

(= (capacity bucket) 60)
(= (volume tank1) 100)
(= (sqrtvolinit tank1) 10)
(= (flow-constant tank1) 0.8)
(= (volume tank2) 64)
(= (sqrtvolinit tank2) 8)
(= (flow-constant tank2) 1))

(:goal (> (volume bucket)
(- (capacity bucket) 2)))

(:metric minimize (total-time)))

The two tanks are such that the initial flow from each is equal
so the best plan is not simply a matter of choosing the best
tank to use. The fastest plan must use each tank in turn, but
how long should each tank be used? Calculating the best
plan turns out to be non-trivial and would pose a challenge
to planners trying to handle non-linear effects. The solution
is in fact given by the solution of a quadratic equation which
may not be surprising considering the volume of the tanks
of water are given by quadratic equations. But what is the
correct quadratic equation to solve? How could a planner be
expected to deduce the correct equation to solve? And how
should a planner interpret the solution?
Now let us consider the following plan to fill the bucket in
some detail:

0.001: (fill-bucket bucket tank1) [4.5]

The first step to validating the plan is to map the plan to
the implied plan to validate which is as follows:

Time Happening

0.001: (fill-bucket bucket tank1)- start

4.501: Invariant for (fill-bucket bucket tank1)
4.501: Update of continuously changing Primitive

Numerical Expressions
4.501: (fill-bucket bucket tank1)- end

Firstly the start of durative action is applied which checks all
‘at start ’ conditions and applies all ‘at start ’ effects.
The duration condition is also checked at the start, which
in this case ensures that the duration is no greater than the
time it takes the tank to empty. Next the invariant conditions
are checked on the open interval from the start of the dura-
tive action to the end of the durative action. There is only
one invariant condition to check which is that the bucket
must not overflow. The volume of water in the bucket is
given by−0.64t2 + 16t so that the condition which must
be checked is−0.64t2 + 16t ≤ 60 for t in (0, 4.5). This
can be shown to hold by checking that the inequality holds

-Time

6
Value

0 6.001
0

60

Figure 5: Graph of (volume bucket) for three separate plans.

at the end points and the equation0.64t2 − 16t + 60 = 0
has no roots (except perhaps repeated roots) in the inter-
val (0, 4.5). Next the continuously changing PNEs are up-
dated, so for example the volume of the bucket is given by
−0.64 × 4.52 + 16 × 4.5 = 59.04. Finally the end of the
durative action is applied checking all ‘at end ’ conditions
and applying all ‘at end ’ effects.

Using the second tank to fill the bucket is even slower
taking 6 time units to fill it to the brim. However if both
tanks are used for the correct amount of time we can obtain
an optimal plan.

0.001: (fill-bucket bucket tank1) [2.61]
2.612: (fill-bucket bucket tank2) [1.5]

Figure 5 shows the volume of the bucket of water for three
plans, from left to right: filling the bucket using both tanks
optimally, using tank 1 and using tank 2.

9 LATEX Plan Validation Report
The LATEX report option (-l) produces a report which is
structured as follows:

Section Topic
1 Domain and problem details
2 Validation Report for the first plan
2.1 Original Plan given by the user for validation
2.2 Plan to be validated byVAL
2.3 Blow by blow account of plan validation
2.4 Gantt chart
2.5 PNE graphs
3... Validation reports of subsequent plans
n... Outcome of validation attempts

The report allows better analysis of a plans validation, as
well as providing a more formal record. Included is a Gantt
chart which is useful to visualize a plans temporal structure,
there are also graphs of the values taken by PNEs during
a plans execution. The features of the report may also be
useful for use in other documents, for example figures 2, 5,
7, 6, 8, 9 and 10 are taken from reports generated byVAL .

Report Styles
The style of the LATEX document, (fonts, use of bold face and
italics etc.) is given by a number of commands in the report
preamble, for example:

6

T
im

e
0

93
.0

79

54321
1

4

7
10

13
16

18
21

2
5

11
14

3
6

9
12

15
17

19
20

22
23

8

Figure 6: Gantt Chart

\newcommand{\action}[1]{{\sf #1}}
\newcommand{\exprn}[1]{{\sf #1}}

To change all the action names and expressions in the re-
port, say to bold face, change the lines accordingly.

\newcommand{\action}[1]{{\bf #1}}
\newcommand{\exprn}[1]{{\bf #1}}

Gantt Chart
The LATEX report includes a Gantt chart of the original plan
given to VAL to validate, this shows the times over which
actions are active highlighting duration, concurrent activity
and dependency. The chart is drawn irrespective to whether
the plan satisfies the final goal, is executable, or indeed
makes any sense at all. Provided the plan can be parsed into
actions from the plan file then the chart will be drawn. The
chart consists of a number of rows against a time line axis,
a durative action is shown as a bar with the start of the bar
representing the start of the action and the end representing
the end of the action. A non-durative action is represented as
a line with a boxed number to label the action on the chart.
The actions are sorted into rows by considering each action

Row 1 : rover2

No Time Action
1 0.001 (navigate rover2 waypoint7 waypoint0) [5]
4 5.006 (samplesoil rover2 rover2store waypoint0)

[10]

Row 2 : rover2

No Time Action
7 5.006 (calibrate rover2 camera1 objective1 way-

point0) [5]
10 10.011 (take image rover2 waypoint0 objective1 cam-

era1 highres) [7]
13 17.018 (navigate rover2 waypoint0 waypoint7) [5]
16 28.029 (communicatesoil data rover2 general way-

point0 waypoint7 waypoint2) [10]
18 38.039 (navigate rover2 waypoint7 waypoint0) [5]
21 48.049 (communicateimagedata rover2 general ob-

jective1 highres waypoint0 waypoint2) [15]

Row 3 : rover1

No Time Action
2 0.001 (navigate rover1 waypoint4 waypoint6) [5]
5 5.006 (samplerock rover1 rover1store waypoint6) [8]
11 13.014 (navigate rover1 waypoint6 waypoint4) [5]
14 18.019 (communicaterock data rover1 general way-

point6 waypoint4 waypoint2) [10]

Row 4 : rover3

No Time Action
3 0.001 (navigate rover3 waypoint7 waypoint3) [5]
6 5.006 (calibrate rover3 camera3 objective3 way-

point3) [5]
9 10.011 (take image rover3 waypoint3 objective2 cam-

era3 lowres) [7]
12 17.018 (calibrate rover3 camera3 objective3 way-

point3) [5]
15 22.023 (take image rover3 waypoint3 objective3 cam-

era3 lowres) [7]
17 29.03 (navigate rover3 waypoint3 waypoint7) [5]
19 38.039 (communicaterock data rover3 general way-

point3 waypoint7 waypoint2) [10]
20 48.049 (navigate rover3 waypoint7 waypoint0) [5]
22 63.064 (communicateimagedata rover3 general ob-

jective3 lowres waypoint0 waypoint2) [15]
23 78.079 (communicateimagedata rover3 general ob-

jective2 lowres waypoint0 waypoint2) [15]

Row 5 : rover3

No Time Action
8 5.006 (samplerock rover3 rover3store waypoint3) [8]

Figure 7: Gantt Chart Key

in turn, as given in the originalPDDL2.1 plan given toVAL ,
using the following rules:

1. An action is placed into the row where the last action ter-
minated most recently. (If there is more than one such row
it is placed into the first of these rows.)

2. If each row has an active action at the start time of the

action to be assigned a row then the action is placed in a
new row. (The first action to be considered is obviously
placed in a new row.)

A domain may contain a set of objects that represent ex-
ecutives, it may then be desirable to highlight those actions
that affect these executives. It is possible to group actions
into rows for each executive, which may have one or many
rows depending on concurrent activity. There may also be
other motives to group the actions with the same object as a
parameter. The extra following rule is then followed if ac-
tions with the same special object are to be grouped together:

3. If an action has a special object then it can only be placed
in a row where the actions in this row also have this object
as a parameter.

The list of special objects can specified using the option
‘ -o obj1 obj2... -o ’, where the list consists of object
names or types of objects. Figures 7 and 6 show an example
of a plan’s Gantt chart usingVAL , given from the 2002 plan-
ning competition using the simple time rover domain, prob-
lem number 12 and the solution given byLPG (Gerevini &
Serina 2002). Rows 1 and 2 (coloured blue) show the actions
for rover2 , row 3 the actions forrover1 (coloured red)
and rows 4 and 5 the actions forrover3 (coloured green).

If the Gantt chart appears to be too ‘cramped’VAL will
split the chart across the time axis by a number of pages.
Also if there are too many rows the chart will be split across
the rows by a number of pages. This page splitting can be
overridden to give the desired appearance using the option
‘ -p <n> <m> ’, wheren is the number of pages to split the
time axis over andmis the number of pages to split the rows
across. To obtain the default value for the number of pages
for either parameter set the value to zero.

Primitive Numerical Expressions
The LATEX report contains graphs showing the values taken
by PNEs over the duration of a plan. These graphs show dis-
crete changes in value (see figure 10), linear changes in value
(see figure 9), and non-linear changes in value (see figure 8).
The interaction between PNEs may also be clearly observed
as shown by the three graphs showing the acceleration (see
figure 10), speed (see figure 9) and distance (see figure 8) of
a car. These graphs were taken from the output ofVAL for a
simple domain modelling the behaviour of driving a car.

10 Overview Of Usage
The code for VAL is written in C++ using the STL. It is
known to compile under Linux with Gnu C++ (2.95.3 and
2.96) and the associated STL. We have also built success-
fully on Sun machines using a Gnu installation (2.95.2). The
parser requires flex++ and bison (also Gnu tools). VAL con-
sists of one executable,validate , which expects three or
more filenames: a domain, a problem and one or more plans.
There is a growing number options available:

-t <n>

Set the tolerance to the (float) value ofn, the default value
is 0.01.

-Time

6Value

0 21
0

50

Figure 8: Graph of (distance car).

-Time

6Value

0 21
0

5

Figure 9: Graph of (speed car).

-Time

6Value

0 21
0

1

-1

b

r b

r b

r b

r

Figure 10: Graph of (acceln car).

-v

Verbose reporting of plan check progress.
-h

Display the help message.
-g

Use the graphplan length where no metric is specified.
-l

Output a LATEX report of the plan validation. This includes
a Gantt chart and graphs of the values taken by PNEs.
-p <n> <m>

This option allows the Gantt chart to be split across a
number of pages. The first valuen is the number of pages to
split the time axis over, the second valuemis the number of
pages to split the rows over. Zero obtains the default value.
-o ... -o

Specify a list of the objects and/or types of objects to be
tracked on the Gantt chart.

-c

Continue the plan validation to next happening if the
current happening fails. The plan will still, of course, be
deemed to have failed. Note that a failed happening may not
have all of its effects enacted.

-i

An invariant may include comparisons with continuously
changing PNEs in it that are too complex to verify. This op-
tion allows the validator to assume that the conditions hold
and continues to validate the plan. The plan is then valid
subject to these conditions holding – which may be trivial to
prove (or disprove) to a human. For example consider the
invariant

t100000000000 − t1000000000 + 2 > 0 for t ∈ (0, 5),

it is not too difficult to prove that this condition holds. How-
ever automatic validation of this invariant using a root find-
ing approach may be somewhat problematic. In the future
when VAL can handle more complex functions it will be
possible to express quite complicated invariants that may
however be simple to verify by a human working with these
functions. For example the following invariant may arise

e−2t − et

t2 + 2t+ 3
+ 1 > 0 for t ∈ (0, 2)

which could be straightforward to verify to a human, but for
VAL to be able to checkanysuch non-linear expression that
may arise is another matter. The PNE graphs may be a useful
indicator to whether an invariant holds or not, but of course
these by no means constitute a proof that the invariant holds
or not.

As an example of usingVAL to validate a plan in the rover
domain, and produce a LATEX report of the results with the
rover objects tracked in the Gantt chart, the following could
be executed:

validate -l -o rover -o STRover.pddl
pfile12 pfile12.soln

11 Conclusion
This document describes the progress of extendingVAL used
in the 3rd International Planning Competition to validate
plans with continuous effects, and the related problems in
achieving this. Currently, to guarantee the validation of a
plan containing durative actions with continuous effects the
restriction that all continuous effects are polynomial must
be met. This condition implies that the dependency graph of
the rates of change of PNEs has no loops. This condition is
automatically checked andVAL identifies plans that it cannot
correctly validate.

The validation of plans containing continuous effects is
an important first step in making planners capable of plan-
ning with languages that express them. The availability of a
validation tool is a vital first step for the community in pro-
gressing along this path. VAL is available at the competition
web-site which is given in the references.

References
Edelkamp, S., and Helmert, M. 2000. On the implementa-
tion of mips. InProceedings of Workshop on Decision-
Theoretic Planning, Artificial Intelligence Planning and
Scheduling (AIPS), 18–25. AAAI-Press.
Fox, M., and Long, D. 2002. PDDL2.1: An ex-
tension to PDDL for expressing temporal planning do-
mains. Technical Report Department of Computer
Science, 20/02, Durham University, UK. Available at
www.dur.ac.uk/d.p.long/competition.html .
Fox, M.; Long, D.; and Committee. 2002. In-
ternational planning competition. Web-site at
www.dur.ac.uk/d.p.long/competition.html .
Gerevini, A., and Serina, I. 2002. LPG: A planner based
on local search for planning graphs. InProc. of 6th In-
ternational Conference on AI Planning Systems (AIPS’02).
AAAI Press.
Howey, R., and Long, D. 2003. A formal se-
mantics for PDDL2.1 with continuous change. Tech-
nical report, Durham University, UK. Available at
www.dur.ac.uk/computer.science/research/stanstuff/

html/dpgpublications.html .
Johnson, J. R., and Krandick, W. 1997. Polynomial real
root isolation using approximate arithmetic. InInterna-
tional Symposium on Symbolic and Algebraic Computa-
tion, 225–232.
Rouillier, F., and Zimmermann, P. 2001. Efficient isolation
of a polynomial real roots. Technical Report 4113, Rinria.

