
A Limited Extension of PDDL for Planning with Non-primitive Actions

Biplav Srivastava
Email: sbiplav@in.ibm.com

IBM India Research Laboratory
Block 1, IIT Delhi, Hauz Khas, New Delhi 110016, India.

Abstract

When planning technology is considered for industrial ap-
plications, Hierarchical Task Network (HTN) planners are
the popular choice because they provide mechanisms to the
domain expert for encoding any available domain knowl-
edge about the hierarchy and inter-relationship among ac-
tions. This information can be used by planning systems to
potentially become more efficient as well as produce desir-
able plans. However, planners appearing in the international
planning competitions (IPCs) have hitherto not been evalu-
ated in domains containing non-primitive actions. The main
reason has been that previous competitions had adopted the
domain modeling maxim that physics and not advice should
be encoded as part of the domain description. While the
physics v/s debate will not end anytime soon, there is no
doubt that the ability to model non-primitive actions in PDDL
will help in introducing real-world domains into future com-
petitions and making them more industry relevant.
In this paper, we propose a limited extension of PDDL to
model non-primitive actions and describe a planning flow so
that even without special provisions for such actions, a popu-
lar class of planners (specifically state-space planners) can
still produce correct and desirable plans with little tweak-
ing. This is made possible by a pre-processing step on non-
primitive actions that creates new, primitive, merged actions
that correspond to all the reductions of the non-primitive ac-
tions. The planner only needs to work with primitive actions
and the generated plan, if using a merged action, is translated
back into the primitive actions. We illustrate the approach by
extending Sapa to handle non-primitive actions.

Introduction
Hierarchical Task Network (HTN) Planning (Erol1995) is a
planning framework to reason with non-primitive and primi-
tive actions. Non-primitive actions aggregate behaviour over
a choice of primitive and other non-primitive actions and
create a hierarchical network of sub-goals (tasks) to achieve.
Actions are aggregated based on domain knowledge to re-
flect the domain expert’s (user’s) desire of acceptable solu-
tions or provide heuristics to expedite solution finding. It is
therefore no surprise that whenever planning technology has
been considered for industrial applications, HTN planners
have been the popular choice.

The International Planning Competitions (IPCs)(McDer-
mott 2000; Bacchus 2000; Fox & Long 2002) have become

a widely anticipated and significant event in the AI horizon.
Besides the competition element (e.g., which is the fastest
planner ?), each IPC has uniquely contributed to better un-
derstanding of the planning problems and solution meth-
ods - AIPS-98 saw the emergence of graphplan-based al-
gorithms on the forefront, AIPS-00 saw the dominance of
heuristic-based algorithms and AIPS-02 gave prominence to
temporal-metric planning. HTN planning was considered as
a possible track for the first competition(McDermott 2000)
but later dropped due to lack of clarity on semantics and do-
main modeling philosophy. All competitions till now have
adopted the domain modeling maxim that physics and not
advice should be encoded as part of the domain descrip-
tion, i.e., the modeling of the domain should be independent
of the intention of any agent in it. Though this philosophy
seems reasonable from a competition standpoint because it
provides no advantage to any specific type of planner, it has
had the unintended effect that automated planners from the
competition do not have a feature that is valuable for large-
scale applications – they cannot handle non-primitive ac-
tions. It is worth noting that an HTN planner, SHOP(Nau et
al 2000), has participated in the hand-coded tracks of AIPS-
00 and AIPS-02 competitions but it was not evaluated for
its ability to use advice. Non-primitive actions can incorpo-
rate both physics and any available advice from the domain.
Consequently, when one wants to use a planner from the
competition to solve problems in real applications, it is not
clear which planner would be able to use advice better.

We take the position that while the physics v/s debate will
not end anytime soon, the ability to model non-primitive ac-
tions in PDDL will help in introducing real-world domains
into the competition and making it more industry relevant
(Srivastava 2002b). Therefore, we propose a limited exten-
sion of PDDL up to level 3 to model non-primitive actions.
We also describe a planning flow so that even without spe-
cial provisions for such actions, a popular class of planners
(specifically state-space planners) can still produce correct
and desirable plans with little tweaking. This is made pos-
sible by a pre-processing step on non-primitive actions that
creates new, primitive, merged actions that correspond to all
the reductions of the non-primitive actions. The planner only
needs to work with primitive actions and the generated plan,
if using a merged action, is translated back into the non-
primitive action. We have implemented the extensions in

Sapa and applied the resulting planner in many applications,
e.g., query planning in bioinformatics(Srivastava 2002a) and
web service composition.

Here is the outline of the paper: we start with a brief
overview of HTN planning and propose the PDDL exten-
sions. Next, we show how Sapa, a temporal planner, can
be extended to support non-primitive actions. Finally, we
summarize the main points and conclude.

HTN Planning

A planning problem
�

is a 3-tuple ���������
	�� where � is the
complete description of the initial state, � is the partial de-
scription of the goal state, and 	 is the set of executable
(primitive) actions. An action sequence is a solution to�

if can be executed from � and the resulting state of
the world contains � . A HTN planning problem(Erol1995;
Kambhampati et al1998) can be seen as a planning problem
where in addition to the primitive actions, the domain con-
tains schemas which represent non-primitive (abstract and
non-executable) actions and acceptable rules to reduce non-
primitive actions to primitive and other non-primitive ac-
tions (hence an hierarchy of actions). The acceptable so-
lutions to a HTN problem not only achieve the top-level
goals but can also be parsed in terms of the non-primitive
actions that are provided for the top-level goals(Barrett &
Weld1994).

A HTN planner can transform any non-primitive action
into executable actions by recursively applying the available
reduction information from the schemas. We will restrict
ourselves to state space planning where actions in a plan se-
quence occur contiguously, i.e., once two actions occur con-
secutively in a partial plan, no other action can subsequently
come between them. In this case, one can interpret any re-
duction of a schema into an eventual sequence of primitive
actions. We use this insight to pre-process (specifically, top-
down parse) the schema into a set of merged actions that
correspond to the sequential execution of the primitive ac-
tions in the final reduction.

Figure 1 gives the new planning flow. At the start, the
primitive and non-primitive actions descriptions are read by
a planner. The non-primitive actions are now used to gen-
erate merged actions which are essentially executable plan
fragments. Both types of actions are together fed to a state-
space planner. Though not necessary for completeness, the
planner may want to differentiate between the actions in or-
der to prefer merged actions because they result from user
provided domain knowledge. The final plan is now post-
processed so that it is in terms of the original inputs.

We now discuss this approach for PDDL(Fox & Long
2002) which is the current planning language adopted for
IPC. It has 1 through 5 levels increasing in functionality:
level 1 is for propositional STRIPS and ADL, level 2 allows
numeric variables, level 3 supports durative actions with dis-
crete effects while level 4 allows continuous effects, and
level 5 has exogenous effects. We consider planning exten-
sions at levels 1 through 3.

Output: P = Translate-Actions(P')

A' = Aprimitive U
 Generate-Merged-Actions(Anon-primitive)

P' = Invoke-Planner(Inputs, Goals, A')

Parse-Actions (Aprimitive and Anon-primitive)
Inputs and Goals

Figure 1: Planning with proposed PDDL extensions.

(:schema � schema-name �
:parameters

(��� ?var � - � var-type ���)
;; Preconditions true at the start
:precondition

[(and] ��� predicate ��� [)]
:effect

[(and] ��� predicate ��� [)]
:method

[(choice] [� (sequence] ��� action ��� [)] � [)])

Figure 2: Schema specification in PDDL level 1. Fields in [
] are optional while fields in �
	 are one or more.

Extension of PDDL
We first discuss the proposed PDDL extensions. In the next
section, we discuss how a non-HTN state space planner can
adopt them to produce correct and desirable plans with mi-
nor tweaking.

Schema Specification
We extend PDDL to represent schemas through the������������ construct which is described in Figure 2 for PDDL
level 1 and Figure 3 for PDDL level 3. The ���������������! #"$ $���
field is a place holder to specify necessary conditions for
applying the schema. These are additional preconditions be-
yond those of the constituent primitive actions which should
be true to apply the reductions. The �%��&�&'���(" field records
the primary effects(Kambhampati et al1998) of the schema
for which the merged action should be introduced into the
plan. They take care of a basic concern in HTN planning
that non-primitive actions should not be used to achieve sec-
ondary effects which will unnecessarily produce very com-
plex plans. The �%����")����� field specifies the choice in select-
ing a sequence of actions that are to be used for reductions.
When there are more than one sequence, a choice delimiter
is used. We purposefully keep the specification of reductions
simple so that merging of actions can be computed without
any runtime information. The �%�+*����,"$ $��� field is applica-
ble only at level 3 and records the minimum and maximum
duration of each sequence of actions which are permissible
while reducing this schema (if only maximum duration is
specified, minimum is assumed 0).

As an example, in Figure 4, a schema is given in a variant
of PDDL level 3. It encodes that the primary reason to make
use of this schema is to prepare the data. In order to achieve
the effect, there is a choice between three sequences of ac-
tions corresponding to the alternative reductions available.

Reduction of a Schema
We noted earlier that if one only considers state space plan-
ning, one can interpret reductions of a schema into an even-
tual sequence of primitive actions. Therefore one can pre-
process (specifically, top-down parse) the schema into a set
of merged actions that correspond to the sequential execu-
tion of the primitive actions in the final reduction.

� timed-predicate � ::=
(at start � predicate �) -
(at end � predicate �) -
(over all � predicate �)

(:schema � schema-name �
:parameters

(��� ?var � - � var-type ���)
;; Static duration
:duration

� max-dur �.- (� min-dur � , � max-dur �)
;; Preconditions true at the start
:precondition

[(and] ��� timed-predicate ��� [)]
:effect

[(and] � timed-predicate ��� [)]
:method

[(choice] [� (sequence] �/� action ��� [)] � [)])

Figure 3: Schema specification in PDDL level 3. Fields in [
] are optional while fields in �0	 are one or more.

(:schema RESULT-PREPARE-SCHEMA
:parameters

(?d - data ?q - query)
;; Static duration
:duration 4
;; Preconditions true at the start
:precondition

()
:effect

(at end (prepared data ?d))
:method

(choice
(sequence

(CLUSTER-DATA ?d)
(PREPARE-DATA ?q ?d))

(sequence
(ALIGN-DATA ?d)
(PREPARE-DATA ?q ?d))

(sequence
(SUMMARIZE-PUBLICATION ?d)
(PREPARE-DATA ?q ?d))))

Figure 4: An example schema.

Figure 5 describes a procedure to create such actions in
a top-down manner. It recursively simulates the execution
of each reduction and collects the specification of the top-
level action. The merged actions are like primitive actions
except that they only record primary effects for which they
will be used during search. The duration specification of the
schema is interpreted as a filtering criteria to assert that only
reductions which lead to action sequences in the permissible
interval are valid. Thus, if the duration of a sequence lies
outside the range, no corresponding merged action is cre-
ated.

The merged actions along with the original primitive ac-
tions can be fed to any state-space planner for its normal
execution. Given an initial and goal state, the planner can
either choose merged actions to respect user’s intent or se-
lect primitive actions to account for possible incompleteness
in domain knowledge.

Specification of Value Preferences
In many applications, we found that the domain expert wants
to specify an preference on the values a variable can take.
Akin to domain axioms, we introduce a ��� ����&'����� construct
to allow a user to specify her preference for a variable’s val-
ues. This information is used while instantiating variables
of a particular type in an action. In Figure 6 for example,
while considering variables of

��� ����� , � ��� *'�	�
� is the most
preferred value followed by � ����* � ��� , and so on.

Soundness and Completeness
We now show that the proposed extensions does not com-
promise on desirable planner properties of soundness and
completeness. A planner is sound if it generates executable
plans and it is complete if the planner will find a solution
whenever one exists. If the state-space planner is originally
sound and complete, the only complication is introduced by
the merged actions that are produced as a result of schema
reductions.

One can be assured of soundness if, as part of the schema
elicitation process, a verification procedure is implemented
that ensures that (a) all the primitive actions mentioned in
the schema are declared, and (b) each action sequence in
the reductions lead to some executable sequence of primi-
tive actions. We assume that such a verification procedure
will exist. Completeness is guaranteed in the new planner as
long as no plan without the merged actions are pruned away.
We assume that the new planner will not prune such a plan
but only penalize it to be further down in the search queue
through heuristic adjustments.

With these precautions in place, the new planner will be
both sound and complete.

Case Study: Adapting Sapa to Plan with
Non-primitive Actions

Sapa(Do & Kambhampati2001) is a heuristic forward state
space (also known as forward chaining) planner that can
handle actions with durations, metric resource constraints
and temporal deadlines. It starts from the initial state and ap-
plies actions as they become applicable taking into account

Algorithm: Generate-Merged-Actions
Input: Schema
Output: � = [] ; set of primitive actions

1. For each action sequence ��� in , create action ���
2. � � .name = Make-unique-name()
3. ��� .parameters = .parameters
4. � � .precondition = .precondition
5. � � .duration = 0
6. ��� .primary = .effect
7. Let � = � �
8. For each action ��� in ���
9. For each merged action ��� in X
10. If � � is non-primitive,
11. Let � = Generate-Merged-Actions(���)
12. For each (non-empty) ��� in �
13. �� = duplicate(�!�) ; Make a copy
14. � = Merge-Action(, � , � �)
15. � = �#"$�
16. End-for
17. Else
18. �!� = Merge-Action(, �!� , � �)
19. � = � " �!�
20. End-if
21. End-for
22. End-for
23. � = � " �
24. End-for

Algorithm: Merge-Action
Input: Schema ,

Currently-Merged-Action � ,
Action �

Output: � ; the updated merged action

1. � .duration = � .duration + � .duration
2. If(� .duration % [.min dur, .max dur])

return []; merge invalid
3. � .parameter = � .parameter " � .parameter
4. � .precondition= � .precondition " � .precondition

- � .effect
5. � .effect = � .effect " � .effect

Figure 5: Procedure to produce primitive (merged) actions
based on reductions in a schema.

(:prefers (�'&)(+*-,/.$� �10/�3254-,6.7.%� �10/�3254-,6.98 � ...)
(�'&:(+*-, 8 � �10/�3254-, 8
. � �10/�3254-, 878 � ...))

Figure 6: Specification of value preferences.

Algorithm: Heuristic-Adjust-Minimal
Input: Partial plan, �
Output: Adjusted heuristic value of the plan

1. 2',�������� = Sapa-heuristic(�)
2. �	�254
���	�� = Sapa-relaxed-plan(�)
3. Foreach merged action, � � in the
�	�254
���	�� of relaxed problem

4. Foreach action, � � constituting
the merged action

5. If ����� �	�254
���	��
6. numMergeRedundantActions ++
7. End-if
8. End-for
9. End-for
10. 2',�������� = 2',�������� + numMergeRedundantActions

Figure 7: Heuristic adjustment for potential non-minimal
plans.

their duration and when (either start or end of the duration)
each effect becomes valid. In order to guide its search, Sapa
builds a temporal relaxed planning graph, and uses action
and resource measures to calculate heuristic distance to the
goal.

We extended Sapa by introducing non-primitive actions
into the domain actions, 	 , and providing reduction schemas
for them. Moreover, we allow users to give preferences over
parameter values of actions and schemas. We also modify
the heuristic estimates to account for merged actions in the
partial plan. The modified planner was applied in many ap-
plications including query planning in bioinformatics (called
SHQPlanner(Srivastava 2002a)) which we discuss here. In
this domain, the user is a biologist who can have specialized
(partial) domain knowledge about how a query should be re-
solved, e.g., a solution for protein search may be to fetch
data, merge results, run a particular application, and show
the result. At PDDL level 3, we can additionally leverage
the duration modeling of actions so that the user can reason
about query costs.

Heuristic Adjustments: Sapa uses heuristics based on
actions and resource usage to guide its search. With merged
actions also added to the set of original primitive actions,
we had to account for the fact that the merged actions sig-
nify user intent. We ensure this by increasing the heuristic
estimate of a plan by some � for each effect supported by a
primitive action in place of an available merged action.

We also wanted to discourage plans where primitive as
well as the merged actions are present to provide the same
effect because the plan could possibly be non-minimal. In
Figure 7, a procedure is described to capture this require-
ment by increasing the heuristic value of such a plan by the
number of potentially redundant primitive actions.

Demonstration: We have built a small bioinformatics
data integration domain containing descriptions of actions
that query gene expression, protein, publication and path-
way sources, and run clustering, sequence alignment and
text summarization applications. Using the value preference

� A0 � . 0.0 – RETRIEVE-DATA (pir protein)
:duration 2.0

� A1 � . 0.0 – RETRIEVE-DATA (swiss-prot protein)
:duration 2.0

� A2 � . 2.0 – ALIGN-DATA (protein)
:duration 1.0

� A3 � . 3.0 – PREPARE-DATA (q1 protein)
:duration 3.0

� A4 � . 6.0 – VISUALIZE-RESULT (q1 protein)
:duration 1.0

Figure 8: A query plan without schemas.

� A0 � . 0.0 – MERGED:DATA-FETCH-SCHEMA:
%RETRIEVE-DATA%ALIGN-DATA
(pir protein)
:duration 3.0

� A1 � . 0.0 – MERGED:DATA-FETCH-SCHEMA:
%RETRIEVE-DATA%ALIGN-DATA
(swiss-prot protein)
:duration 3.0

� A2 � . 3.0 – PREPARE-DATA (q1 protein)
:duration 3.0

� A3 � . 6.0 – VISUALIZE-RESULT (q1 protein)
:duration 1.0

Figure 9: A query plan with schemas. The merged actions
will be replaced with the corresponding action sequences in
a post-processing step.

mechanism, the user can provide information to the planner
like query data source PIR only if a query on data source
SWISS-PROT has failed.

Suppose the biologist wants to retrieve aligned protein
data and see the matched sequences in a viewer. We can run
SHQPlanner as a regular planner, i.e., Sapa, or as a HTN
planner with the proposed PDDL extensions. In Figure 8, a
query plan is shown for the problem where data is retrieved
from the two protein sources and then they are aligned
with each other. But if the user only wants to align pro-
teins of each source respectively, it is much simpler to real-
ize the requirement with a suitable schema(DATA-FETCH-
SCHEMA here). Figure 9 has the resultant plan. The query
plans are generated in a few milliseconds.

Conclusion
The ability to model non-primitive actions in PDDL is
very important in introducing real-world domains into future
IPCs and making them more industry relevant. Hierarchical
task network (HTN) planning generally looks into planning

with domain knowledge encoded in schemas and primitive
actions. A typical algorithm considers non-primitive actions
and their reduction schemas as part of the domain specifi-
cation (i.e., the set of available actions) and generalizes the
planning refinements to handle non-primitive actions. How-
ever, we wanted to avoid algorithm level dependency in or-
der to make the planning flow general for a large class of
planners.

In this paper, we propose a limited extension of PDDL
with the following salient features:

� We introduce non-primitive actions into the action domain
model and provide an offline semantics of the reductions
so that their resulting effect can be captured as merged
actions which is computable without any runtime infor-
mation. We currently restrict the semantics to state space
refinement but it already encompasses most of the plan-
ners fielded in previous IPCs.

� We introduce a feature so that the user can encode their
preference for values that a variable in the domain de-
scription can take.

� The primitive and merged actions are input to any state
space planner as the action set for regular planning. The
planner may differentiate between the actions to capture
the user intent (encoded in the merged actions) but the
PDDL specification does not provide any advice of how.

� As long as reasonable discipline is maintained in schema
elicitation, the planner continues to be sound and com-
plete.

� Any merged action in the final plan is will have to be
translated into the corresponding sequence of primitive
actions.

We demonstrated the extensions in Sapa and showed the
benefit of the new planner by planning in a real-world appli-
cation.

References
Bacchus, F. 2000. AIPS-00 Planning Competition. At

http://www.cs.toronto.edu/aips2000/
Barrett, A., and Weld, D. 1994. Task Decomposition via
Plan Parsing. Proc. AAAI.
Do, B., and Kambhampati, S. 2001. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner. Proc. Eu-
ropean Conference on Planning.
Erol, K. 1995. Hierarchical task network planning: For-
malization, Analysis, and Implementation. Ph.D. thesis,
Dept. of Computer Science, Univ. of Maryland, College
Park, USA.
Fox, M., and Long,
D. 2002. AIPS-02 International Planning Competition.
At http://www.dur.ac.uk/d.p.long/competition.html.
Fox, M., and Long, D. 2002. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Avail-
able at http://www.dur.ac.uk/d.p.long/competition.html.
Kambhampati, S., Mali, A., and Srivastava, B. 1998. Hy-
brid planning for partially hierarchical domains. Proc.
AAAI.

Kambhampati, S., and Srivastava, B. 1995. Universal
Classical Planner: An algorithm for unifying state space
and plan space approaches. In New Trend in AI Planning:
EWSP 95, IOS Press.
McDermott, D. 2000. The 1998 AI Planning Competition.
AI Magazine, 21(2).
Nau, D., Cao, Y., Lotem, A., and Muoz-Avila, H. 1995.
SHOP and M-SHOP: Planning with Ordered Task Decom-
position. Tech. Report CS TR 4157, University of Mary-
land, College Park, MD, June, 2000.
Srivastava, B. 2002a. Using Planning for Query Decompo-
sition in Bioinformatics. AI Planning & Scheduling (AIPS-
02) Workshop on ”Is There Life Beyond Operator Sequenc-
ing? – Exploring Real World Planning”.
Srivastava, B. 2002b. Temporal Constraints and the
Physics v/s Advice Issue from a Practical Perspective. AI
Planning & Scheduling (AIPS-02) Workshop on ”Temporal
Planning”.

